ÌâÄ¿ÄÚÈÝ
8£®¡÷ABCÖУ¬AB±ßÉϵÄÖÐÏßCDµÈÓÚ2£¬¶¯µãPÂú×ã$\overrightarrow{AP}$=$\frac{1}{2}$t•$\overrightarrow{AB}$+£¨1-t£©•$\overrightarrow{AC}$£¨0¡Üt¡Ü1£©£¬Ôò£¨$\overrightarrow{PA}$+$\overrightarrow{PB}$£©•$\overrightarrow{PC}$µÄȡֵ·¶Î§Îª[-2£¬0]£®·ÖÎö ÓÉÏòÁ¿Ê½±äÐοÉÍÆµÃµãPÔÚCDÉÏ£¬ÓÉÊýÁ¿»ýµÄ¶¨Òå½áºÏ»ù±¾²»µÈʽ¿ÉµÃ´ð°¸£®
½â´ð
½â£ºÓÉÌâÒâ¿ÉµÃ£º$\overrightarrow{AB}$=2$\overrightarrow{AD}$£¬
¡à$\overrightarrow{AP}$=t•$\overrightarrow{AD}$+£¨1-t£©•$\overrightarrow{AC}$£¨0¡Üt¡Ü1£©£¬t+1-t=1£¬
¡àP£¬D£¬CÈýµã¹²Ïߣ¬¼´µãPÔÚCDÉÏ£¬
¶ø$\overrightarrow{PA}+\overrightarrow{PB}$=2$\overrightarrow{PD}$£¬
¡à£¨$\overrightarrow{PA}$+$\overrightarrow{PB}$£©•$\overrightarrow{PC}$=2$\overrightarrow{PD}$•$\overrightarrow{PC}$=2|$\overrightarrow{PD}$||$\overrightarrow{PC}$|cos¦Ð=-2|$\overrightarrow{PD}$||$\overrightarrow{PC}$|£¬
¡ß|$\overrightarrow{PD}$|+|$\overrightarrow{PC}$|=|$\overrightarrow{CD}$|=2£¬
¡à|$\overrightarrow{PD}$|+|$\overrightarrow{PC}$|¡Ü£¨$\frac{|\overrightarrow{PD}|+|\overrightarrow{PC}|}{2}$£©2=1£¬
¡à-2|$\overrightarrow{PD}$||$\overrightarrow{PC}$|¡Ý-2£¬
¹Ê´ð°¸Îª£º[-2£¬0]£®
µãÆÀ ±¾Ì⿼²éÏòÁ¿µÄÊýÁ¿»ýµÄÔËËãºÍ»ù±¾²»µÈʽµÄÓ¦Óã¬ÓÉÌâÒâµÃ³öP¡¢D¡¢CÈýµã¹²ÏßÊǽâ¾öÎÊÌâµÄ¹Ø¼ü£¬ÊôÖеµÌ⣮
| A£® | £¨-¡Þ£¬-8£© | B£® | £¨-8£¬0£© | C£® | £¨-8£¬8£© | D£® | £¨-8£¬+¡Þ£© |
| A£® | 3x-2y+6=0 | B£® | 3x+2y+1=0 | C£® | 3x-2y-6=0 | D£® | 3x-2y+1=0 |
| A£® | 16 | B£® | 24 | C£® | 32 | D£® | 40 |