题目内容

16.在△ABC中,内角A,B,C所对的边分别是a,b,c已知b=4,c=5,A=60°.
(1)求边长a和△ABC的面积;
(2)求sin2B的值.

分析 (1)由已知及余弦定理可求a,进而利用三角形面积公式即可计算得解.
(2)由正弦定理可得sinB=$\frac{bsinA}{a}$,由b<c,可得B为锐角,利用同角三角函数基本关系式可求cosB,进而利用二倍角的正弦函数公式即可计算得解.

解答 (本题满分为12分)
解:(1)∵b=4,c=5,A=60°.
∴由余弦定理可得:a2=b2+c2-2bccosA=16+25-4×5=21,
∴a=$\sqrt{21}$,
∴S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}×4×5×\frac{\sqrt{3}}{2}$=5$\sqrt{3}$…6分
(2)∵由正弦定理可得:$\frac{b}{sinB}=\frac{a}{sinA}$,可得:sinB=$\frac{bsinA}{a}$=$\frac{4}{\sqrt{21}}×\frac{\sqrt{3}}{2}$=$\frac{2}{\sqrt{7}}$…8分
∵b<c,B为锐角,可得:cosB=$\frac{\sqrt{3}}{\sqrt{7}}$,…10分
∴sin2B=2sinBcosB=2×$\frac{2}{\sqrt{7}}×\frac{\sqrt{3}}{\sqrt{7}}$=$\frac{4\sqrt{3}}{7}$…12分

点评 本题主要考查了余弦定理,三角形面积公式,正弦定理,同角三角函数基本关系式,二倍角的正弦函数公式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网