题目内容
设正数A、B、C的常用对数分别是a、b、c,且a+b+c=0,求证:A
+
•B
+
•C
+
= .
| 1 |
| b |
| 1 |
| c |
| 1 |
| c |
| 1 |
| a |
| 1 |
| a |
| 1 |
| b |
考点:对数的运算性质
专题:函数的性质及应用
分析:由题设推导出lgA=a,lgB=b,lgC=c,a+b=-c,a+c=-b,b+c=-a,由对数运算法则推导出lg(A
+
•B
+
•C
+
)=-3.由此能够证明A
+
•B
+
•C
+
=
.
| 1 |
| b |
| 1 |
| c |
| 1 |
| c |
| 1 |
| a |
| 1 |
| a |
| 1 |
| b |
| 1 |
| b |
| 1 |
| c |
| 1 |
| c |
| 1 |
| a |
| 1 |
| a |
| 1 |
| b |
| 1 |
| 1000 |
解答:
解:∵正数A、B、C的常用对数分别是a、b、c,且a+b+c=0,
∴lgA=a,lgB=b,lgC=c,
a+b=-c,a+c=-b,b+c=-a,
∵lg(A
+
•B
+
•C
+
)
=(
+
)lgA+(
+
)lgB+(
+
)lgC
=(
+
)a+(
+
)b+(
+
)c
=
+
+
+
+
+
=
+
+
=
+
+
=(-1)+(-1)+(-1)
=-3.
∴A
+
•B
+
•C
+
=10-3=
.
故答案为:
.
∴lgA=a,lgB=b,lgC=c,
a+b=-c,a+c=-b,b+c=-a,
∵lg(A
| 1 |
| b |
| 1 |
| c |
| 1 |
| c |
| 1 |
| a |
| 1 |
| a |
| 1 |
| b |
=(
| 1 |
| b |
| 1 |
| c |
| 1 |
| c |
| 1 |
| a |
| 1 |
| a |
| 1 |
| b |
=(
| 1 |
| b |
| 1 |
| c |
| 1 |
| c |
| 1 |
| a |
| 1 |
| a |
| 1 |
| b |
=
| a |
| b |
| a |
| c |
| b |
| c |
| b |
| a |
| c |
| a |
| c |
| b |
=
| b+c |
| a |
| a+c |
| b |
| a+b |
| c |
=
| -a |
| a |
| -b |
| b |
| -c |
| c |
=(-1)+(-1)+(-1)
=-3.
∴A
| 1 |
| b |
| 1 |
| c |
| 1 |
| c |
| 1 |
| a |
| 1 |
| a |
| 1 |
| b |
| 1 |
| 1000 |
故答案为:
| 1 |
| 1000 |
点评:本题考查对数的运算法则的应用,是中档题,解题时要熟练掌握对数的性质的灵活运用.
练习册系列答案
相关题目
一个等差数列的前n项和为20,前2n项和为70,则它的前3n项和为( )
| A、120 | B、130 |
| C、150 | D、170 |