题目内容
17.程序框图如图所示,当$A=\frac{12}{13}$时,输出的k的值为( )| A. | 11 | B. | 12 | C. | 13 | D. | 14 |
分析 模拟程序的运行可得程序框图的功能,用裂项法可求S的值,进而解不等式可求k的值.
解答 解:模拟程序的运行,可得程序框图的功能是计算并输出S=$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…$\frac{1}{k×(k+1)}$≥$\frac{12}{13}$时k的值,
由于:S=$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…$\frac{1}{k×(k+1)}$=(1-$\frac{1}{2}$)+($\frac{1}{2}-\frac{1}{3}$)+…+($\frac{1}{k}$-$\frac{1}{k+1}$)=1-$\frac{1}{k+1}$=$\frac{k}{k+1}$,
所以:由$\frac{k}{k+1}$≥$\frac{12}{13}$,解得:k≥12,
所以:当$A=\frac{12}{13}$时,输出的k的值为12.
故选:B.
点评 本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键,属于基础题.
练习册系列答案
相关题目
7.
如图,四边形ABCD为距形,AB=$\sqrt{3}$,BC=1,以A为圆心,AD为半径画圆,交线段AB于E,在圆弧DE上任取一点P,则直线AP与线段BC有公共点的概率为( )
| A. | $\frac{\sqrt{3}π}{12}$ | B. | $\frac{12-\sqrt{3}π}{12}$ | C. | $\frac{1}{3}$ | D. | $\frac{2}{3}$ |
2.命题“?x>0,lnx>0”的否定是( )
| A. | ?x>0,lnx>0 | B. | ?x>0,lnx>0 | C. | ?x>0,lnx≥0 | D. | ?x>0,lnx≤0 |
9.m,n是空间两条不同直线,α,β是两个不同平面.有以下四个命题:
①若m∥α,n∥β且α∥β,则m∥n;
②若m⊥α,n⊥β且α⊥β,则m⊥n;
③若m⊥α,n∥β且α∥β,则m⊥n;
④若m∥α,n⊥β且α⊥β,则m∥n.
其中真命题的序号是( )
①若m∥α,n∥β且α∥β,则m∥n;
②若m⊥α,n⊥β且α⊥β,则m⊥n;
③若m⊥α,n∥β且α∥β,则m⊥n;
④若m∥α,n⊥β且α⊥β,则m∥n.
其中真命题的序号是( )
| A. | ①② | B. | ②③ | C. | ③④ | D. | ①④ |
7.已知sin($\frac{π}{2}+α$)=-$\frac{3}{5}$,$α∈(\frac{π}{2},π)$,则tanα=( )
| A. | $\frac{3}{4}$ | B. | -$\frac{3}{4}$ | C. | -$\frac{4}{3}$ | D. | $\frac{4}{3}$ |