题目内容
正方体ABCD-A1B1C1D1中,异面直线A1C1与B1C所成的角是( )
| A、30° | B、45° |
| C、60° | D、90° |
考点:异面直线及其所成的角
专题:空间角
分析:由直线A1C1∥AC,得∠B1CA是异面直线A1C1与B1C所成的角,由此能求出异面直线A1C1与B1C所成的角.
解答:
解:如图,∵直线A1C1∥AC,
∴∠B1CA是异面直线A1C1与B1C所成的角,
连结AB1,AC,
∵△ACB1是等边三角形,
∴∠B1CA=60°.
∴异面直线A1C1与B1C所成的角是60°.
故选:C.
∴∠B1CA是异面直线A1C1与B1C所成的角,
连结AB1,AC,
∵△ACB1是等边三角形,
∴∠B1CA=60°.
∴异面直线A1C1与B1C所成的角是60°.
故选:C.
点评:本题考查空间点、线、面的位置关系及学生的空间想象能力、求异面直线角的能力.在立体几何中找平行线是解决问题的一个重要技巧,这个技巧就是通过三角形的中位线找平行线,如果试题的已知中涉及到多个中点,则找中点是出现平行线的关键技巧.
练习册系列答案
相关题目