ÌâÄ¿ÄÚÈÝ
10£®£¨1£©Çó¶«²¿¸÷³ÇÊйۿ´¸Ã½ÚÄ¿¹ÛÖÚÆ½¾ùÈËÊý³¬¹ýÎ÷²¿¸÷³ÇÊйۿ´¸Ã½ÚÄ¿¹ÛÖÚÆ½¾ùÈËÊýµÄ¸ÅÂÊ£®
£¨2£©Ëæ×ŽÚÄ¿µÄ²¥³ö£¬¼«´ó¼¤·¢Á˹ÛÖÚ¶ÔÀʶÁÒÔ¼°¾µäµÄÔĶÁѧϰ»ýÀÛµÄÈÈÇ飬´ÓÖлñÒæ·Ëdz£¬ÏÖ´Ó¹Û¿´½ÚÄ¿µÄ¹ÛÖÚÖÐËæ»úͳ¼ÆÁË4λ¹ÛÖÚµÄÖܾùÔĶÁѧϰ¾µä֪ʶµÄʱ¼ä£¨µ¥Î»£ºÐ¡Ê±£©ÓëÄêÁ䣨µ¥Î»£ºË꣩£¬²¢ÖÆ×÷Á˶ÔÕÕ±í£¨Èç±íËùʾ£©£º
| ÄêÁäxËê | 20 | 30 | 40 | 50 |
| Öܾùѧϰ³ÉÓï֪ʶʱ¼äy£¨Ð¡Ê±£© | 2.5 | 3 | 4 | 4.5 |
·ÖÎö £¨1£©Çó³ö»ù±¾Ê¼þµÄ¸öÊý£¬¼´¿ÉÇó³ö¸ÅÂÊ£»
£¨2£©Çó³ö»Ø¹éϵÊý£®¿ÉµÃ»Ø¹é·½³Ì£®ÔÙÔ¤²âÄêÁäΪ50Ëê¹ÛÖÚÖܾùѧϰ³ÉÓï֪ʶʱ¼ä£®
½â´ð ½â£º£¨1£©Éè±»ÎÛËðµÄÊý×ÖΪa£¬ÔòaÓÐ10ÖÖÇé¿ö£®
Áî88+89+90+91+92£¾83+83+97+90+a+99£¬Ôòa£¼8£®
¡à¶«²¿¸÷³ÇÊйۿ´¸Ã½ÚÄ¿¹ÛÖÚÆ½¾ùÈËÊý³¬¹ýÎ÷²¿¸÷³ÇÊйۿ´¸Ã½ÚÄ¿¹ÛÖÚÆ½¾ùÈËÊý£¬ÓÐ8ÖÖÇé¿ö£¬
Æä¸ÅÂÊΪ$\frac{8}{10}=\frac{4}{5}$£®
£¨2£©$\overline{x}$=35£¬$\overline{y}$=3.5£¬$\widehat{b}$=$\frac{525-10¡Á35¡Á3.5}{5400-10¡Á352}$=$\frac{7}{100}$£¬
$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$=$\frac{21}{20}$£¬
¡à$\widehat{y}$=$\frac{7}{100}$x+$\frac{21}{20}$x=50ʱ£¬$\widehat{y}$=4.55Сʱ£®
µãÆÀ ±¾Ì⿼²é¹Åµä¸ÅÐ͸ÅÂʵļÆË㣬¿¼²é¶ÀÁ¢ÐÔ¼ìÑé֪ʶµÄÔËÓã¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
14£®ÒÑÖª¡°ÕûÊý¶Ô¡±°´ÈçϹæÂÉÅųÉÒ»ÁУº£¨0£¬0£©£¬£¨0£¬1£©£¬£¨1£¬0£©£¬£¨0£¬2£©£¬£¨1£¬1£©£¬£¨2£¬0£©£¬£¨0£¬3£©£¬£¨1£¬2£©£¬£¨2£¬1£©£¬£¨3£¬0£©£¬¡£¬ÔòµÚ222¸ö¡°ÕûÊý¶Ô¡±ÊÇ£¨¡¡¡¡£©
| A£® | £¨10£¬10£© | B£® | £¨10£¬9£© | C£® | £¨11£¬9£© | D£® | £¨9£¬10£© |
18£®ÒÑÖªº¯Êý$f£¨x£©=2sin£¨{¦Øx+¦Õ}£©£¨{¦Ø£¾0£¬|¦Õ|£¼\frac{¦Ð}{2}}£©$µÄÁ½ÌõÏàÁÚ¶Ô³ÆÖá¼äµÄ¾àÀëΪ$\frac{¦Ð}{2}$£¬°Ñf£¨x£©µÄͼÏóÏòÓÒÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»µÃµ½º¯Êýg£¨x£©µÄͼÏó£¬ÇÒg£¨x£©ÎªÅ¼º¯Êý£¬Ôòf£¨x£©µÄµ¥µ÷µÝÔöÇø¼äΪ£¨¡¡¡¡£©
| A£® | $[{2k¦Ð+\frac{¦Ð}{3}£¬2k¦Ð+\frac{4¦Ð}{3}}]£¬k¡Êz$ | B£® | $[{k¦Ð+\frac{¦Ð}{3}£¬k¦Ð+\frac{4¦Ð}{3}}]£¬k¡Êz$ | ||
| C£® | $[{2k¦Ð-\frac{¦Ð}{6}£¬2k¦Ð+\frac{¦Ð}{3}}]£¬k¡Êz$ | D£® | $[{k¦Ð-\frac{¦Ð}{6}£¬k¦Ð+\frac{¦Ð}{3}}]£¬k¡Êz$ |
15£®ÒÑÖªº¯Êýf£¨x£©=$\sqrt{3}$sin£¨¦Øx+¦Õ£©£¬£¨¦Ø£¾0£¬|¦Õ|£¼$\frac{¦Ð}{2}$£©£¬A£¨$\frac{1}{3}$£¬0£©Îªf£¨x£©Í¼ÏóµÄ¶Ô³ÆÖÐÐÄ£¬Èô¸ÃͼÏóÉÏÏàÁÚÁ½Ìõ¶Ô³ÆÖá¼äµÄ¾àÀëΪ2£¬Ôòf£¨x£©µÄµ¥µ÷µÝÔöÇø¼äÊÇ£¨¡¡¡¡£©
| A£® | £¨2k-$\frac{2}{3}$£¬2k+$\frac{4}{3}$£©£¬k¡ÊZ | B£® | £¨2k¦Ð-$\frac{2¦Ð}{3}$£¬2k¦Ð+$\frac{4¦Ð}{3}$£©£¬k¡ÊZ | ||
| C£® | £¨4k-$\frac{2}{3}$£¬4k+$\frac{4}{3}$£©£¬k¡ÊZ | D£® | £¨4k¦Ð-$\frac{2¦Ð}{3}$£¬4k¦Ð+$\frac{4¦Ð}{3}$£©£¬k¡ÊZ |
20£®
ÈçͼËùʾ£¬º¯Êýy=f£¨x£©µÄͼÏóÔÚµãP´¦µÄÇÐÏß·½³ÌÊÇy=-x+5£¬Ôòf£¨3£©+f'£¨3£©=£¨¡¡¡¡£©
| A£® | $\frac{1}{2}$ | B£® | 1 | C£® | 2 | D£® | 0 |