题目内容
15.对于数列{xn},若对任意n∈N+,都有$\frac{{x}_{n}+{x}_{n+2}}{2}<{x}_{n+1}$成立,则称数列{xn}为“减差数列”.设b${\;}_{n}=2t-\frac{t{n}^{2}-n}{{2}^{n-1}}$,若数列b${\;}_{5},{b}_{6},{b}_{7},…,{b}_{n}(n≥5,n∈{N}^{+})$是“减差数列”,则实数t的取值范围是($\frac{3}{5}$,+∞).分析 数列b5,b6,b7,…是“减差数列”,可得n≥5时,得$\frac{{b}_{n}+{b}_{n+2}}{2}$<bn+1,代入化简即可得出.
解答 解:数列b5,b6,b7,…是“减差数列”,得$\frac{{b}_{n}+{b}_{n+2}}{2}$<bn+1,n≥5,
即t-$\frac{t{n}^{2}-n}{{2}^{n}}$+t-$\frac{t(n+2)^{2}-(n+2)}{{2}^{n+2}}$<2t-$\frac{t(n+1)^{2}-(n+1)}{{2}^{n}}$,
即$\frac{t{n}^{2}-n}{{2}^{n}}$+$\frac{t(n+2)^{2}-(n+2)}{{2}^{n+2}}$>$\frac{t(n+1)^{2}-(n+1)}{{2}^{n}}$,
化简得t(n2-4n)>n-2,
当n≥5时,若t(n2-4n)>n-2恒成立,则t>$\frac{n-2}{{n}^{2}-4n}$=$\frac{1}{(n-2)-\frac{4}{n-2}}$恒成立,
又当n≥5时,$\frac{1}{(n-2)-\frac{4}{n-2}}$的最大值为$\frac{3}{5}$,
则t的取值范围是($\frac{3}{5}$,+∞).
故答案为:($\frac{3}{5}$,+∞).
点评 本题考查了新定义“减差数列”、不等式的解法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
5.给出下列四个函数,其中图象关于y轴对称的是( )
| A. | y=x-5 | B. | y=$\frac{{x}^{2}+1}{x}$ | C. | y=2x+log2x | D. | y=3x+3-x |
3.要得到函数 f(x)=sin(3x+$\frac{π}{3}$)的导函数f′(x)的图象,只需将f(x)的图象( )
| A. | 向右平移$\frac{π}{3}$个单位,再把各点的纵坐标伸长到原来的3倍( 横坐标不变) | |
| B. | 向右平移$\frac{π}{6}$个单位,再把各点的纵坐标缩短到原来的3倍( 横坐标不变) | |
| C. | 向左平移$\frac{π}{3}$个单位,再把各点的纵坐标缩短到原来的 3倍( 横坐标不变) | |
| D. | 向左平移$\frac{π}{6}$个单位,再把各点的纵坐标伸长到原来的 3倍( 横坐标不变) |
4.设集合A={x|-1<x<1},B={x|log2x<-1},则A∩B=( )
| A. | $({0,\frac{1}{2}})$ | B. | $({\frac{1}{2},1})$ | C. | (0,1) | D. | $({-1,\frac{1}{2}})$ |
14.已知圆C的参数方程为$\left\{\begin{array}{l}{x=-1+cosα}\\{y=1+sinα}\end{array}\right.$ (α为参数),当圆心C到直线kx+y+4=0的距离最大时,k的值为( )
| A. | $\frac{1}{3}$ | B. | $\frac{1}{5}$ | C. | -$\frac{1}{3}$ | D. | -$\frac{1}{5}$ |