题目内容
用0,1,2,3,4,5这六个数字组成没有重复数字的三位数,其中偶数共有( )
| A、40个 | B、42个 |
| C、48个 | D、52个 |
考点:排列、组合的实际应用
专题:计算题
分析:由于0不能在首位数字,则分2种情况讨论:①、若0在个位,此时0一定不在首位,由排列公式即可得此时三位偶数的数目,②、若0不在个位,此时0可能在首位,由分步计数原理可得此情况下三位偶数的数目,综合2种情况,由分类计数原理计算可得答案.
解答:
解:根据题意,分2种情况讨论:
①、若0在个位,
此时只须在1,2,3,4,5中任取2个数字,作为十位和百位数字即可,有A52=20个没有重复数字的三位偶数;
②、若0不在个位,
此时必须在2或4中任取1个,作为个位数字,有2种取法,
0不能作为百位数字,则百位数字有4种取法,十位数字也有4种取法,
此时共有2×4×4=32个没有重复数字的三位偶数;
综合可得,共有20+32=52个没有重复数字的三位偶数;
故选:D.
①、若0在个位,
此时只须在1,2,3,4,5中任取2个数字,作为十位和百位数字即可,有A52=20个没有重复数字的三位偶数;
②、若0不在个位,
此时必须在2或4中任取1个,作为个位数字,有2种取法,
0不能作为百位数字,则百位数字有4种取法,十位数字也有4种取法,
此时共有2×4×4=32个没有重复数字的三位偶数;
综合可得,共有20+32=52个没有重复数字的三位偶数;
故选:D.
点评:本题考查排列、组合的应用,涉及分类、分步计数原理的应用,解题需要注意偶数的末位数字以及0不能在首位等性质.
练习册系列答案
相关题目
若cosα=-
,且α∈(π,
),则sin(α+
)等于( )
| ||
| 2 |
| 3π |
| 2 |
| π |
| 6 |
A、
| ||||
B、-
| ||||
C、
| ||||
D、-
|
终边落在X轴上的角的集合是( )
| A、{ α|α=k•360°,K∈Z } |
| B、{ α|α=(2k+1)•180°,K∈Z } |
| C、{ α|α=k•180°,K∈Z } |
| D、{ α|α=k•180°+90°,K∈Z } |
已知cos2α=
,则sin2(α+
)等于( )
| 1 |
| 3 |
| π |
| 2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
半径为3cm,中心角为
的弧长为( )
| 2π |
| 3 |
A、
| ||
| B、πcm | ||
C、
| ||
| D、2πcm |
观察数表
则f[g(3)-f(-1)]=( )
| x | -3 | -2 | -1 | 1 | 2 | 3 |
| f(x) | 4 | 1 | -1 | -3 | 3 | 5 |
| g(x) | 1 | 4 | 2 | 3 | -2 | -4 |
| A、3 | B、4 | C、-3 | D、5 |
已知双曲线
-
=1(a>0,b>0)的渐近线经过点(2,1),则双曲线的离心率为( )
| x2 |
| a2 |
| y2 |
| b2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|