题目内容
8.设$\overrightarrow m,\overrightarrow n$是两个不共线的向量,若$\overrightarrow{AB}=\overrightarrow m+5\overrightarrow n,\overrightarrow{BC}=-2\overrightarrow{m}+8\overrightarrow n,\overrightarrow{CD}=4\overrightarrow m+2\overrightarrow n$,则( )| A. | A,B,C三点共线 | B. | A,B,D三点共线 | C. | A,C,D三点共线 | D. | B,C,D三点共线 |
分析 由已知可得:$\overrightarrow{BD}$=$\overrightarrow{BC}$+$\overrightarrow{CD}$=2$\overrightarrow{m}$+$10\overrightarrow{n}$=2$\overrightarrow{AB}$,即可得出结论.
解答 解:$\overrightarrow{BD}$=$\overrightarrow{BC}$+$\overrightarrow{CD}$=$-2\overrightarrow{m}$+8$\overrightarrow{n}$+4$\overrightarrow{m}$+2$\overrightarrow{n}$=2$\overrightarrow{m}$+$10\overrightarrow{n}$=2$(\overrightarrow{m}+5\overrightarrow{n})$=2$\overrightarrow{AB}$,
∴A,B,D三点共线.
故选:B.
点评 本题考查了向量共线定理,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
19.在复平面内,与复数z=1-2i对应的点所在的象限是( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
20.函数y=$\sqrt{2sin(2x-\frac{π}{3})-1}$的增区间是( )
| A. | $[kπ+\frac{π}{4},kπ+\frac{17π}{12}],(k∈Z)$ | B. | $[kπ+\frac{π}{6},kπ+\frac{5π}{12}],(k∈Z)$ | ||
| C. | $[kπ+\frac{π}{4},kπ+\frac{5π}{12}],(k∈Z)$ | D. | $[kπ-\frac{π}{12},kπ+\frac{5π}{12}],(k∈Z)$ |
17.过点(2,3)且与直线2x-3y-2=0平行的直线的点方向式方程是( )
| A. | 2(x-2)+3(y-3)=0 | B. | $\frac{x-2}{-3}$=$\frac{y-3}{2}$ | C. | 3(x-2)+2(y-3)=0 | D. | $\frac{x-2}{3}$=$\frac{y-3}{2}$ |