题目内容
4.(1)在图中画出y=f(x)的图象;
(2)求不等式|f(x)|>1的解集.
分析 (1)求出f(x)分段函数的形式,画出函数图象即可;(2)结合函数图象求出不等式的解集即可.
解答
解:(1)∵$f(x)=\left\{{\begin{array}{l}{-3x-5,x≤-\frac{1}{2}}\\{x-3,-\frac{1}{2}<x≤3}\\{3x-9,x>3}\end{array}}\right.$,
函数y=f(x)的图象如图所示
(2)由不等式|f(x)|>1得f(x)<-1或f(x)>1,
由f(x)的表达式及图象,
当f(x)=1时,可得x=-2或$x=\frac{10}{3}$;
当f(x)=-1时,可得$x=-\frac{4}{3}$或x=2,
故f(x)>1的解集为$\left\{{x|x<-2或x>\frac{10}{3}}\right\}$;
f(x)<-1的解集为$\left\{{x|-\frac{4}{3}<x<2}\right\}$,
所以|f(x)|>1的解集为$\left\{{x|x<-2或-\frac{4}{3}<x<2或x>\frac{10}{3}}\right\}$.
点评 本题考查了解绝对值不等式问题,考查数形结合思想,是一道中档题.
练习册系列答案
相关题目
14.设a>0,若关于x,y的不等式组$\left\{\begin{array}{l}{ax-y+2≥0}\\{x+y-2≥0}\\{x-2≤0}\end{array}\right.$,表示的可行域与圆(x-2)2+y2=9存在公共点,则z=x+2y的最大值的取值范围为( )
| A. | [8,10] | B. | (6,+∞) | C. | (6,8] | D. | [8,+∞) |
12.已知双曲线$E:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右顶点为A,抛物线C:y2=8ax的焦点为F.若在E的渐近线上存在点P,使得$\overrightarrow{AP}⊥\overrightarrow{FP}$,则E的离心率的取值范围是( )
| A. | (1,2) | B. | (1,$\frac{3\sqrt{2}}{4}$] | C. | $[{\frac{{3\sqrt{2}}}{4},+∞})$ | D. | (2,+∞) |
19.观察研究某种植物的生长速度与温度的关系,经过统计,得到生长速度(单位:毫米/月)与月平均气温的对比表如下:
(1)求生长速度y关于温度t的线性回归方程;(斜率和截距均保留为三位有效数字);
(2)利用(1)中的线性回归方程,分析气温从-50C至200C时生长速度的变化情况,如果某月的平均气温是20C时,预测这月大约能生长多少.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:$\hat b=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline{xy}}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}},\hat a=\overline y-\hat b\overline x$.
| 温度t(℃) | -5 | 0 | 6 | 8 | 12 | 15 | 20 |
| 生长速度y | 2 | 4 | 5 | 6 | 7 | 8 | 10 |
(2)利用(1)中的线性回归方程,分析气温从-50C至200C时生长速度的变化情况,如果某月的平均气温是20C时,预测这月大约能生长多少.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:$\hat b=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline{xy}}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}},\hat a=\overline y-\hat b\overline x$.
9.
我国古代数学家祖暅是著名数学家祖冲之之子,祖暅原理叙述道:“夫叠棋成立积,缘幂势既同,则积不容异.”意思是:夹在两个平行平面之间的两个几何体被平行于这两个平行平面的任意平面所截,如果截得的两个截面面积总相等,那么这两个几何体的体积相等.其最著名之处是解决了“牟合方盖”中的体积问题,其核心过程为:如下图正方体ABCD-A1B1C1D1,求图中四分之一圆柱体BB1C1-AA1D1和四分之一圆柱体AA1B1-DD1C1公共部分的体积V,若图中正方体的棱长为2,则V=( )
(在高度h处的截面:用平行于正方体上下底面的平面去截,记截得两圆柱体公共部分所得面积为S1,截得正方体所得面积为S2,截得锥体所得面积为S3,${S_1}={R^2}-{h^2}$,${S_2}={R^2}$⇒S2-S1=S3)
(在高度h处的截面:用平行于正方体上下底面的平面去截,记截得两圆柱体公共部分所得面积为S1,截得正方体所得面积为S2,截得锥体所得面积为S3,${S_1}={R^2}-{h^2}$,${S_2}={R^2}$⇒S2-S1=S3)
| A. | $\frac{16}{3}$ | B. | $\frac{8}{3}$ | C. | 8 | D. | $\frac{8π}{3}$ |