题目内容
12.| A. | 1 | B. | 2 | C. | 4 | D. | 8 |
分析 几何体为半圆柱与半球的组合体.
解答 解:由俯视图可知几何体为半圆柱与半球的组合体,半圆柱与半球的半径均为r,半圆柱的高为2r,
∴几何体的表面积为为$\frac{1}{2}×4π{r}^{2}$+$\frac{1}{2}π{r}^{2}$+$\frac{1}{2}π{r}^{2}$+πr×2r+2r×2r=5πr2+4r2=64+80π.
解得r=4.
故选:C.
点评 本题考查了空间几何体的三视图,圆柱的结构特征,面积计算,属于基础题.
练习册系列答案
相关题目
17.函数y=f(x)在(0,2)上是增函数,函数y=f(x+2)是偶函数,则下列结论正确的是( )
| A. | f(1)<f($\frac{5}{2}$)<f($\frac{7}{2}$) | B. | f($\frac{5}{2}$)<f(1)<f($\frac{7}{2}$) | C. | f($\frac{7}{2}$)<f($\frac{5}{2}$)<f(1) | D. | f($\frac{7}{2}$)<f(1)<f($\frac{5}{2}$) |
4.已知定义域为R的函数f(x)满足f(-x)=-f(x+4),且当x>2时,f(x)单调递增.如果x1+x2<4,且(x1-2)(x2-2)<0,则f(x1)+f(x2)的取值范围是( )
| A. | (-∞,0) | B. | (-∞,0] | C. | (0,1] | D. | (0,+∞) |
1.在△ABC中,$\overrightarrow{AB}=\overrightarrow c,\overrightarrow{BC}=\overrightarrow a,\overrightarrow{CA}=\overrightarrow b$,下列推导不正确的是( )
| A. | 若$\overrightarrow a•\overrightarrow b>0$,则△ABC为钝角三角形 | B. | $\overrightarrow a•\overrightarrow b=0$,则△ABC为直角三角形 | ||
| C. | $\overrightarrow a•\overrightarrow b=\overrightarrow b•\overrightarrow c$,则△ABC为等腰三角形 | D. | $\overrightarrow c•({\overrightarrow a+\overrightarrow b+\overrightarrow c})=0$,则△ABC为正三角形 |