ÌâÄ¿ÄÚÈÝ
17£®º¯Êýy=f£¨x£©µÄ¶¨ÒåÓòD={x|x¡ÊR£¬ÇÒx¡Ù0}£¬¶Ô¶¨ÒåÓòDÄÚÈÎÒâÁ½¸öʵÊýx1£¬x2£¬¶¼ÓÐf£¨x1£©+f£¨x2£©=f£¨x1x2£©³ÉÁ¢£®£¨1£©Çóf£¨-1£©µÄÖµ²¢Ö¤Ã÷y=f£¨x£©ÎªÅ¼º¯Êý£»
£¨2£©Èôf£¨-4£©=4£¬¼Ç an=£¨-1£©n•f£¨2n£©£¨n¡ÊN£¬n¡Ý1£©£¬ÇóÊýÁÐ{an}µÄǰ2015ÏîµÄºÍS2015£»
£¨3£©£¨Àí£© Èôx£¾1ʱ£¬f£¨x£©£¼0£¬ÇÒ²»µÈʽ$f£¨\sqrt{{x^2}+{y^2}}£©¡Üf£¨\sqrt{xy}£©+f£¨a£©$¶ÔÈÎÒâÕýʵÊýx£¬yºã³ÉÁ¢£¬Çó·ÇÁãʵÊýaµÄȡֵ·¶Î§£®
£¨ÎÄ£©Èôx£¾1ʱ£¬f£¨x£©£¼0£¬½â¹ØÓÚxµÄ²»µÈʽ f£¨x-3£©¡Ý0£®
·ÖÎö £¨1£©ÀûÓø³Öµ·¨Çóf£¨-1£©µÄÖµ£¬ÀûÓÃżº¯ÊýµÄ¶¨ÒåÅжϺ¯ÊýΪżº¯Êý£»
£¨2£©Ïȸù¾Ýf£¨n£©ÇóÊýÁÐ{an}µÄͨÏ½ø¶ø¿ÉÇóÊýÁÐ{an}µÄǰ2015ÏîµÄºÍS2015£»
£¨3£©ÏÈ˵Ã÷f£¨x£©£¾0£¬£¨0£¼x£¼1£©£¬ÀûÓûù±¾²»µÈʽÇó³ö¼´¿É£¬£¨ÎÄ£©¸ù¾Ýº¯ÊýΪżº¯Êý¼´f£¨x-3£©¡Ý0£¬¿ÉÓÐ0£¼|x-3|¡Ü1£¬´Ó¶ø¿É½â²»µÈʽ£®
½â´ð ½â£º£¨1£©¸³ÖµµÃf£¨1£©=f£¨-1£©=0£¬
¡ßf£¨-x£©=f£¨-1£©+f£¨x£©=f£¨x£©
¡àº¯ÊýΪżº¯Êý£»
£¨2£©f£¨-4£©=4µÃf£¨2£©=2£¬f£¨2n£©=f£¨2n-1£©+f£¨2£©£¬
¡àf£¨2n£©=2n£¬
¡àan=2•£¨-1£©nn£¬
¡àS2015=-2016£»
£¨3£©Éè $0£¼x£¼1£¬Ôò\frac{1}{x}£¾1$£¬
$0=f£¨1£©=f£¨x£©+f£¨\frac{1}{x}£©$£¬
µÃf£¨x£©£¾0£¨0£¼x£¼1£©£¬
£¨Àí£©$f£¨\sqrt{{x^2}+{y^2}}£©¡Üf£¨\sqrt{xy}£©+f£¨a£©$£¬
µÃ£º$f£¨\frac{{\sqrt{{x^2}+{y^2}}}}{{a\sqrt{xy}}}£©¡Ü0$?$\frac{{\sqrt{{x^2}+{y^2}}}}{{|a|\sqrt{xy}}}¡Ý1$$|a|¡Ü\frac{{\sqrt{{x^2}+{y^2}}}}{{\sqrt{xy}}}$ºã³ÉÁ¢£¬
ÓÖ$\frac{{\sqrt{{x^2}+{y^2}}}}{{\sqrt{xy}}}¡Ý\sqrt{2}$£¬´Ó¶ø$0£¼|a|¡Ü\sqrt{2}$£®
£¨ÎÄ£©f£¨x-3£©¡Ý0?0£¼|x-3|¡Ü1?2¡Üx£¼3»ò3£¼x¡Ü4£®
µãÆÀ ±¾ÌâµÄ¿¼µãÊǺ¯Êýºã³ÉÁ¢ÎÊÌ⣬Ö÷Òª¿¼²éºÏÊʵÄÐÎʽ£¬¿¼²éÊýÁÐÓ뺯ÊýµÄ¹ØÏµ£¬¿¼²éºã³ÉÁ¢ÎÊÌ⣬¹Ø¼üÊÇ·ÖÀë²ÎÊý£¬ÀûÓÃ×îÖµ·¨Çó½â£®
| A£® | f£¨cosA£©£¾f£¨cosB£© | B£® | f£¨sinA£©£¾f£¨sinB£© | C£® | f£¨sinA£©£¾f£¨cosB£© | D£® | f£¨sinA£©£¼f£¨cosB£© |
| A£® | 2 | B£® | -1 | C£® | 1 | D£® | $\frac{1}{2}$ |