题目内容
4.△ABC中,$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{AC}=\overrightarrow b$,$\overrightarrow{BD}=\frac{1}{2}\overrightarrow{DC}$,则$\overrightarrow{AD}$=( )| A. | $\frac{2}{3}\overrightarrow a+\frac{1}{3}\overrightarrow b$ | B. | $\frac{1}{3}\overrightarrow a+\frac{2}{3}\overrightarrow b$ | C. | $\frac{1}{3}\overrightarrow a+\frac{1}{3}\overrightarrow b$ | D. | $\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b$ |
分析 根据向量的加减的几何意义即可求出.
解答 解:△ABC中,$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{AC}=\overrightarrow b$,$\overrightarrow{BD}=\frac{1}{2}\overrightarrow{DC}$,
则$\overrightarrow{AD}$=$\overrightarrow{AB}$+$\overrightarrow{BD}$=$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{BC}$=$\overrightarrow{AB}$+$\frac{1}{3}$($\overrightarrow{AC}$-$\overrightarrow{AB}$)=$\frac{2}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$=$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$,
故选:A
点评 本题考查了向量的加减的几何意义,属于基础题.
练习册系列答案
相关题目
14.设$\overrightarrow{a}$,$\overrightarrow{b}$是两个非零向量.向量$\overrightarrow{a}$=(1,x),向量$\overrightarrow{b}$=(3,1).向量$\overrightarrow{a}⊥\overrightarrow{b}$,则x的值为( )
| A. | $\frac{1}{3}$ | B. | 3 | C. | $-\frac{1}{3}$ | D. | -3 |
12.已知定义在R上的函数f(x)满足f(-x)=f(x),且对于任意x1,x2∈[0,+∞),x1≠x2,均有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0.若f(-$\frac{1}{3}$)=$\frac{1}{2}$,2f(log${\;}_{\frac{1}{8}}$x)<1,则x的取值范围为( )
| A. | (0,2) | B. | $({\frac{1}{2},+∞})$ | C. | $({0,\frac{1}{2}})∪({2,+∞})$ | D. | $({\frac{1}{2},1})∪({1,2})$ |
19.若(1-2x)2017=a0+a1x+…+a2017x2017(x∈R),则$\frac{a_1}{2^2}+\frac{a_2}{2^3}+…+\frac{{{a_{2017}}}}{{{2^{2018}}}}$=( )
| A. | $\frac{1}{2}$ | B. | 1 | C. | $-\frac{1}{2}$ | D. | -1 |
9.已知0<x≤3,则$y=x+\frac{16}{x}$的最小值为( )
| A. | $\frac{25}{3}$ | B. | 16 | C. | 20 | D. | 10 |
16.函数$f(x)=\sqrt{x+3}+{log_2}(6-x)$的定义域是( )
| A. | (6,+∞) | B. | (-3,6) | C. | (-3,+∞) | D. | [-3,6) |