题目内容

19.若(1-2x)2017=a0+a1x+…+a2017x2017(x∈R),则$\frac{a_1}{2^2}+\frac{a_2}{2^3}+…+\frac{{{a_{2017}}}}{{{2^{2018}}}}$=(  )
A.$\frac{1}{2}$B.1C.$-\frac{1}{2}$D.-1

分析 令x=0,可得1=a0.令x=$\frac{1}{2}$,即可求出.

解答 解:由(1-2x)2017=a0+a1x+…+a2017x2017(x∈R),
令x=0,可得1=a0
令x=$\frac{1}{2}$,可得a0+$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{2017}}{{2}^{2017}}$=0,
∴$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{2017}}{{2}^{2017}}$=-1,
两边同乘以$\frac{1}{2}$得$\frac{a_1}{2^2}+\frac{a_2}{2^3}+…+\frac{{{a_{2017}}}}{{{2^{2018}}}}$=-$\frac{1}{2}$,
故选:C

点评 本题考查了二项式定理的应用、方程的应用,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网