题目内容
已知锐角A,B满足tan(A+B)=2tanA,则tanB的最大值是 .
【解析】
试题分析:由题意得:,当且仅当取等号
考点:基本不等式求最值
若函数是奇函数,则
如图,三棱柱中,, ,平面平面,与相交于点.
(1)求证:平面;
(2)设点是直线上一点,且平面,求平面与平面夹角的余弦值.
已知直线,直线,且,则的值为( )
A、-1 B、 C、或-2 D、-1或-2
(本小题满分14分)
设△ABC三个内角A、B、C所对的边分别为a,b,c. 已知C=,acosA=bcosB.
(1)求角A的大小;
(2)如图,在△ABC的外角∠ACD内取一点P,使得PC=2.过点P分别作直线CA、CD的垂线PM、PN,垂足分别是M、N.设∠PCA=α,求PM+PN的最大值及此时α的取值.
为了解宿迁市高三学生的身体发育情况,抽查了宿迁市100名高三男生的体重. 根据抽样测量后的男生体重(单位:kg)数据绘制的频率分布直方图如图所示,则这100名学生中体重值在区间[56.5,64.5)的人数是 .
(本小题满分16分)
在平面直角坐标系xOy中,椭圆C:(a>b>0)的上顶点到焦点的距离为2,离心率为.
(1)求a,b的值.
(2)设P是椭圆C长轴上的一个动点,过点P作斜率为k的直线l交椭圆C于A、B两点.
(ⅰ)若k=1,求△OAB面积的最大值;
(ⅱ)若PA2+PB2的值与点P的位置无关,求k的值.
已知集合,则 .
若无穷数列满足:①对任意,;②存在常数,对任意,,则称数列为“数列”.
(Ⅰ)若数列的通项为,证明:数列为“数列”;
(Ⅱ)若数列的各项均为正整数,且数列为“数列”,证明:对任意,;
(Ⅲ)若数列的各项均为正整数,且数列为“数列”,证明:存在 ,数列为等差数列.