题目内容
已知cosα=
,cos(α-β)=
,且0<α<β<
,则β=______.
| 1 |
| 7 |
| 13 |
| 14 |
| π |
| 2 |
由0<α<β<
,得到0<β-α<
,又cosα=
,cos(α-β)=cos(β-α)=
,
所以sinα=
=
,sin(β-α)=
=
,
则cosβ=cos[(β-α)+α]
=cos(β-α)cosα-sin(β-α)sinα
=
×
-
×
=
,
所以β=
.
故答案为:
| π |
| 2 |
| π |
| 2 |
| 1 |
| 7 |
| 13 |
| 14 |
所以sinα=
1-(
|
4
| ||
| 7 |
| 1-cos2(β-α) |
3
| ||
| 14 |
则cosβ=cos[(β-α)+α]
=cos(β-α)cosα-sin(β-α)sinα
=
| 13 |
| 14 |
| 1 |
| 7 |
3
| ||
| 14 |
4
| ||
| 7 |
| 1 |
| 2 |
所以β=
| π |
| 3 |
故答案为:
| π |
| 3 |
练习册系列答案
相关题目