题目内容
已知向量
=(4cos
,1),
=(sin(x+
),-1),f(x)=
•
.
(1)求f(x)的单调增区间;
(2)求f(x)在区间[-
,
]上的最大值和最小值.
| a |
| π |
| 3 |
| b |
| π |
| 6 |
| a |
| b |
(1)求f(x)的单调增区间;
(2)求f(x)在区间[-
| π |
| 6 |
| π |
| 6 |
分析:(1)利用两个向量的数量积公式化简函数f(x)的解析式为sin(x+
)-1,由-
+2kπ≤x+
≤
+2kπ求得x的范围,即可求得f(x)的单调增区间.
(2)由(1)知f(x)在[-
,
]上递增,由此求得f(x)在区间[-
,
]上的最大值和最小值.
| π |
| 6 |
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
(2)由(1)知f(x)在[-
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
解答:解:(1)f(x)=
•
=(2,1)•(sin(x+
),-1)=2sin(x+
)-1.…2′
由-
+2kπ≤x+
≤
+2kπ得:2kπ-
≤x≤2kπ+
,(k∈z).
∴f(x)的单调增区间是[2kπ-
,2kπ+
](k∈z).…6′
(2)由(1)知f(x)在[-
,
]上递增,∴当x=-
时,f(x)取得最小值-1;
当x=
时,f(x)取得最大值2sin
-1=
-1.…12′
| a |
| b |
| π |
| 6 |
| π |
| 6 |
由-
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
| 2π |
| 3 |
| π |
| 3 |
∴f(x)的单调增区间是[2kπ-
| 2π |
| 3 |
| π |
| 3 |
(2)由(1)知f(x)在[-
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
当x=
| π |
| 6 |
| π |
| 3 |
| 3 |
点评:本题主要考查两个向量的数量积公式的应用,正弦函数的定义域和值域以及单调性,属于中档题.
练习册系列答案
相关题目