题目内容
已知向量
=(sin(α+
),1),
=(4,4cosα-
),若
⊥
,则sin(α+
)等于( )
| a |
| π |
| 6 |
| b |
| 3 |
| a |
| b |
| 4π |
| 3 |
分析:由
⊥
,
•
=0,结合两角和的正弦公式,可得sin(α+
)=
,进而由诱导公式,可得sin(α+
)=-sin(α+
),进而得到答案.
| a |
| b |
| a |
| b |
| π |
| 3 |
| 1 |
| 4 |
| 4π |
| 3 |
| π |
| 3 |
解答:解:∵向量
=(sin(α+
),1),
=(4,4cosα-
),
⊥
,
∴
•
=4sin(α+
)+4cosα-
=4sinα•
+4cosα•
+4cosα-
=2
sinα+6cosα-
=4
(sinα•
+cosα•
)-
=4
sin(α+
)-
=0
即sin(α+
)=
故sin(α+
)=-sin(α+
)=-
故选C
| a |
| π |
| 6 |
| b |
| 3 |
| a |
| b |
∴
| a |
| b |
| π |
| 6 |
| 3 |
=4sinα•
| ||
| 2 |
| 1 |
| 2 |
| 3 |
=2
| 3 |
| 3 |
=4
| 3 |
| 1 |
| 2 |
| ||
| 2 |
| 3 |
=4
| 3 |
| π |
| 3 |
| 3 |
即sin(α+
| π |
| 3 |
| 1 |
| 4 |
故sin(α+
| 4π |
| 3 |
| π |
| 3 |
| 1 |
| 4 |
故选C
点评:本题考查的知识点是平面向量的数量积运算,两角和的正弦公式,诱导公式,是三角函数与向量的综合应用,难度中档.
练习册系列答案
相关题目