题目内容

已知向量
a
=(sinx,
3
4
),
b
=(cosx,-1).
(1)当
a
b
时,求cos2x-sin2x的值;
(2)设函数f(x)=2(
a
+
b
)-
b
,已知在△ABC中,内角A、B、C的对边分别为a、b、c,若a=
3
,b=2,sinB=
6
3
,求 f(x)+4cos(2A+
π
6
)(x∈[0,
π
3
])的取值范围.
分析:(1)由
a
b
可得
3
4
cosx+sinx=0
,从而可求tanx,而cos2x-sin2x=
cos2x-2sinxcosx
cos2x+sin2x

(2)由正弦定理得,
a
sinA
=
b
sinB
可得sinA=
2
2
 可求A=
π
4
代入可得f(x)=2(
a
+
b
)•
b
 =
2
sin(2x+
π
4
)+
3
2
,结合已知x∈[0,
π
3
]
可求函数的值域
解答:解:(1)∵
a
b

3
4
cosx+sinx=0

tanx=-
3
4
(2分)
cos2x-sin2x=
cos2x-2sinxcosx
sin2x+cos2x
=
1-2tanx
1+tan2x
=
8
5
(6分)
(2)f(x)=2(
a
+
b
)•
b
 =
2
sin(2x+
π
4
)+
3
2

由正弦定理得,
a
sinA
=
b
sinB
可得sinA=
2
2
 
所以A=
π
4
(9分)
f(x)+4cos(2A+
π
6
)=
2
sin(2x+
π
4
)-
1
2

x∈[0,
π
3
]
2x+
π
4
∈[
π
4
11π
12
]

所以
3
2
-1≤f(x)+4cos(2A+
π
6
)≤
2
-
1
2
(12分)
点评:本题主要考查了向量平行的坐标表示,利用1=sin2x+cos2x的代换,求解含有sinx,cosx的齐次式,向量的数量积的坐标表示,三角函数在闭区间上的值域的求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网