题目内容
9.已知函数f(x)=lnx-2ax,a∈R.(Ⅰ)若函数y=f(x)存在与直线2x-y=0垂直的切线,求实数a的取值范围;
(Ⅱ)设g(x)=f(x)+$\frac{1}{2}{x^2}$,若g(x)有极大值点x1,求证:$\frac{{ln{x_1}}}{x_1}+\frac{1}{{{x_1}^2}}$>a.
分析 (Ⅰ)求出函数的导数,问题转化为x=$\frac{2}{4a-1}$在(0,+∞)上有解,求出a的范围即可;
(Ⅱ)求出g(x)的解析式,通过讨论a的范围,问题转化为证明x1lnx1+1>ax12,令h(x)=-$\frac{{x}^{3}}{2}$-$\frac{1}{2}$x+xlnx+1,x∈(0,1),根据函数的单调性证明即可.
解答 (Ⅰ)解:因为f′(x)=$\frac{1}{x}$-2a,x>0,
因为函数y=f(x)存在与直线2x-y=0垂直的切线,
所以f′(x)=-$\frac{1}{2}$在(0,+∞)上有解,
即$\frac{1}{x}$-2a=-$\frac{1}{2}$在(0,+∞)上有解,
也即x=$\frac{2}{4a-1}$在(0,+∞)上有解,
所以$\frac{2}{4a-1}$>0,得a>$\frac{1}{4}$,
故所求实数a的取值范围是($\frac{1}{4}$,+∞);
(Ⅱ)证明:因为g(x)=f(x)+$\frac{1}{2}$x2=$\frac{1}{2}$x2+lnx-2ax,
因为g′(x)=$\frac{{x}^{2}-2ax+1}{x}$,
①当-1≤a≤1时,g(x)单调递增无极值点,不符合题意,
②当a>1或a<-1时,令g′(x)=0,设x2-2ax+1=0的两根为x1和x2,
因为x1为函数g(x)的极大值点,所以0<x1<x2,
又x1x2=1,x1+x2=2a>0,所以a>1,0<x1<1,
所以g′(x1)=x12-2ax1+$\frac{1}{{x}_{1}}$=0,则a=$\frac{{{x}_{1}}^{2}+1}{{2x}_{1}}$,
要证明 $\frac{l{nx}_{1}}{{x}_{1}}$+$\frac{1}{{{x}_{1}}^{2}}$>a,只需要证明x1lnx1+1>ax12,
因为x1lnx1+1-ax12=x1lnx1-$\frac{{{{x}_{1}}^{3}+x}_{1}}{2}$+1=-$\frac{{{x}_{1}}^{3}}{2}$-$\frac{1}{2}$x1+x1lnx1+1,0<x1<1,
令h(x)=-$\frac{1}{2}$x3-$\frac{1}{2}$x+xlnx+1,x∈(0,1),
所以h′(x)=-$\frac{3}{2}$x2-$\frac{1}{2}$+lnx,记P(x)=-$\frac{3}{2}$x2-$\frac{1}{2}$+lnx,x∈(0,1),
则P′(x)=-3x+$\frac{1}{x}$=$\frac{1-{3x}^{2}}{x}$,
当0<x<$\frac{\sqrt{3}}{3}$时,p′(x)>0,当$\frac{\sqrt{3}}{3}$<x<1时,p′(x)<0,
所以p(x)max=p($\frac{\sqrt{3}}{3}$)=-1+ln$\frac{\sqrt{3}}{3}$<0,所以h′(x)<0,
所以h(x)在(0,1)上单调递减,
所以h(x)>h(1)=0,原题得证.
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,是一道中档题.
| A. | {3,5} | B. | {3,4} | C. | {-9,3} | D. | {-9,3,4} |
| A. | $\frac{\sqrt{5}}{2}$ | B. | $\frac{\sqrt{10}}{2}$ | C. | $\frac{3\sqrt{2}}{2}$ | D. | $\sqrt{10}$ |
| A. | 1 | B. | -1 | C. | 7 | D. | -7 |
| A. | 9 | B. | 36 | C. | 81 | D. | 41 |
| A. | [1,3) | B. | (1,3) | C. | (0,3] | D. | (-∞,-5]∪[6,+∞) |
| A. | $\frac{{\sqrt{13}}}{2}$ | B. | $\frac{3}{2}$ | C. | $1+\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{7}}}{2}$ |