ÌâÄ¿ÄÚÈÝ
5£®ÒÑÖªÆ½ÃæÏòÁ¿$\overrightarrowa$£¬$\overrightarrow b$Âú×ã$|{\overrightarrow a}|=2$£¬$|{\overrightarrow b}|=1$£¬$\overrightarrow a•\overrightarrow b=1$£®Ôò¶ÔÓÚÈÎÒâµÄʵÊým£¬$|{m\overrightarrow a+£¨2-4m£©\overrightarrow b}|$µÄ×îСֵΪ£¨¡¡¡¡£©| A£® | 2 | B£® | 1 | C£® | $\frac{1}{2}$ | D£® | $\frac{2}{3}$ |
·ÖÎö ¸ù¾Ý$|\overrightarrow{a}|=2£¬|\overrightarrow{b}|=1£¬\overrightarrow{a}•\overrightarrow{b}=1$½øÐÐÊýÁ¿»ýµÄÔËËã¿ÉµÃµ½$|m\overrightarrow{a}+£¨2-4m£©\overrightarrow{b}{|}^{2}=12{m}^{2}-12m+4$£¬¶øÅä·½¼´¿ÉÇóµÃ$|m\overrightarrow{a}+£¨2-4m£©\overrightarrow{b}{|}^{2}¡Ý1$£¬´Ó¶ø±ã¿ÉµÃ³ö$|m\overrightarrow{a}+£¨2-4m£©\overrightarrow{b}|$µÄ×îСֵ£®
½â´ð ½â£º¸ù¾ÝÌõ¼þ£º$|m\overrightarrow{a}+£¨2-4m£©\overrightarrow{b}{|}^{2}={m}^{2}{\overrightarrow{a}}^{2}$$+2m£¨2-4m£©\overrightarrow{a}•\overrightarrow{b}+£¨2-4m£©^{2}{\overrightarrow{b}}^{2}$
=4m2+2m£¨2-4m£©+£¨2-4m£©2
=12m2-12m+4
=$12£¨m-\frac{1}{2}£©^{2}+1¡Ý1$£»
¡à$|m\overrightarrow{a}+£¨2-4m£©\overrightarrow{b}|¡Ý1$£»
¡à$|m\overrightarrow{a}+£¨2-4m£©\overrightarrow{b}|$µÄ×îСֵΪ1£®
¹ÊÑ¡B£®
µãÆÀ ¿¼²éÏòÁ¿ÊýÁ¿»ýµÄÔËËã¼°Æä¼ÆË㹫ʽ£¬ÕÆÎÕ±¾ÌâÒªÇó$|m\overrightarrow{a}+£¨2-4m£©\overrightarrow{b}|$µÄ×îСֵ£¬¶øÇó$|m\overrightarrow{a}+£¨2-4m£©\overrightarrow{b}{|}^{2}$µÄ·¶Î§µÄ·½·¨£¬²»µÈʽµÄÐÔÖÊ£¬ÒÔ¼°Åä·½Çó¶þ´Îº¯Êý×îÖµµÄ·½·¨£®
| A£® | $y=¡À\frac{{\sqrt{3}}}{3}x$ | B£® | $y=¡À\frac{5}{3}x$ | C£® | $y=¡À\frac{3}{5}x$ | D£® | $y=¡À\sqrt{3}x$ |
| A£® | P⊆Q | B£® | Q⊆P | C£® | P⊆∁RQ | D£® | Q⊆∁RP |
| A£® | $\frac{\sqrt{3}}{2}$ | B£® | $\frac{\sqrt{2}}{2}$ | C£® | $\frac{1}{2}$ | D£® | $\frac{\sqrt{3}}{3}$ |
| A£® | {x|x¡Ü2} | B£® | {x|1¡Üx¡Ü3} | C£® | {x|2£¼x¡Ü3} | D£® | {x|2¡Üx¡Ü3} |
p1£º?£¨x£¬y£©¡ÊD£¬z¡Ý1£»p2£º?£¨x£¬y£©¡ÊD£¬z¡Ý1
p3£º?£¨x£¬y£©¡ÊD£¬z¡Ü2£»p4£º?£¨x£¬y£©¡ÊD£¬z£¼0
ÆäÖеÄÕæÃüÌâÊÇ£¨¡¡¡¡£©
| A£® | p1£¬p2 | B£® | p1£¬p3 | C£® | p1£¬p4 | D£® | p2£¬p3 |