题目内容
16.已知集合A={1,2},B={x|ax-2=0},若B⊆A,则实数a的所有可能值构成的集合为( )| A. | {1,$\frac{1}{2}$} | B. | {1,2} | C. | {0,1,2} | D. | 以上都不对 |
分析 本题首先认清集合B的元素,带入方程ax-2=0,求解a即可.
解答 解:∵集合A={1,2},B={x|ax-2=0},B⊆A,
∴B=∅或B={1}或B={2}
∴a=0,1,2
故选:C
点评 本题属于以一元一次方程为依托,求集合的相等关系的基础题,也是高考常会考的题型.
练习册系列答案
相关题目
6.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:
①7,34,61,88,115,142,169,196,223,250;
②5,9,100,107,111,121,180,195,200,265;
③11,38,65,92,119,146,173,200,227,254;
④30,57,84,111,138,165,192,219,246,270;关于上述样本的下列结论中,正确的是( )
①7,34,61,88,115,142,169,196,223,250;
②5,9,100,107,111,121,180,195,200,265;
③11,38,65,92,119,146,173,200,227,254;
④30,57,84,111,138,165,192,219,246,270;关于上述样本的下列结论中,正确的是( )
| A. | ①③都可能为分层抽样 | B. | ②④都不能为分层抽样 | ||
| C. | ②③都不能为系统抽样 | D. | ①④都可能为系统抽样 |
4.在正方体ABCD-A1B1C1D1中,直线BD1与CC1所成角的正切值为( )
| A. | $\sqrt{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\sqrt{3}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
1.已知函数f(x)=x2-2(a+2)x+a2,g(x)=-x2+2(a-2)x-a2+8.设函数H1(x)=$\left\{\begin{array}{l}{f(x),f(x)≥g(x)}\\{g(x),f(x)<g(x)}\end{array}\right.$,H2(x)=$\left\{\begin{array}{l}{g(x),f(x)≥g(x)}\\{f(x),f(x)<g(x)}\end{array}\right.$,记H1(x)的最小值为A,H2(x)的最大值为B,则A-B( )
| A. | 16 | B. | -16 | C. | a2+2a-16 | D. | a2-2a-16 |
8.下列说法正确的是( )
| A. | 命题“若sinx=siny,则x=y”的逆否命题为真命题 | |
| B. | “x=-1”是“x2-5x-6=0”的必要不充分条件 | |
| C. | 命题“?x∈R,x2+x+1<0”的否定是“?x∈R,x2+x+1<0” | |
| D. | 命题“若x2=1,则x=1”的否命题为“若x2≠1,则x≠1” |