题目内容
9.等比数列{an}中各项均为正数,Sn是其前n项和,且满足2S3=8a1+3a2,a4=16,则S4=( )| A. | 9 | B. | 15 | C. | 18 | D. | 30 |
分析 设等比数列{an}的公比为q>0,由2S3=8a1+3a2,可得2(a1+a2+a3)=8a1+3a2,化为:2q2-q-6=0,解得q,进而得出.
解答 解:设等比数列{an}的公比为q>0,∵2S3=8a1+3a2,
∴2(a1+a2+a3)=8a1+3a2,化为:2a3=6a1+a2,可得$2{a}_{1}{q}^{2}$=6a1+a1q,化为:2q2-q-6=0,解得q=2.
又a4=16,可得a1×23=16,解得a1=2.
则S4=$\frac{2×({2}^{4}-1)}{2-1}$=30.
故选:D.
点评 本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
19.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$过点(3,2),当a2+b2取得最小值时,椭圆的离心率为( )
| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
20.双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点F到E的渐近线的距离为$\sqrt{3}a$,则E的离心率是( )
| A. | $\sqrt{2}$ | B. | $\frac{3}{2}$ | C. | 2 | D. | 3 |
17.某几何体的三视图如图所示,则其表面积为( )

| A. | $12+2\sqrt{2}$ | B. | $8+2\sqrt{2}$ | C. | $4+4\sqrt{2}$ | D. | $8+4\sqrt{2}$ |
6.已知数列{an}是等比数列,若${a_2}=1,{a_5}=\frac{1}{8}$,则${a_1}{a_2}+{a_2}{a_3}+…+{a_n}{a_{n+1}}({n∈{N^*}})$的取值范围是( )
| A. | $({\frac{2}{3},2}]$ | B. | $[{1,\frac{8}{3}})$ | C. | $[{2,\frac{8}{3}})$ | D. | $({-∞,\frac{8}{3}})$ |