题目内容

1.在△ABC中,角A,B,C的对边分别为a,b,c,且2csinC=(2b+a)sinB+(2a-3b)sinA.
(1)求角C的大小;
(2)若c=4,求a+b的取值范围.

分析 (1)利用正弦定理化简已知等式可得a2+b2-c2=ab,利用余弦定理可求cosC=$\frac{1}{2}$,结合范围C∈(0,π),可求C的值.
(2)由(1)及余弦定理,基本不等式可求16≥(a+b)2-$\frac{3(a+b)^{2}}{4}$,解得a+b≤8,利用两边之和大于第三边可求a+b>c=4,即可得解a+b的取值范围.

解答 (本题满分为12分)
解:(1)∵2csinC=(2b+a)sinB+(2a-3b)sinA.
∴2c2=(2b+a)b+(2a-3b)a,整理可得:a2+b2-c2=ab,…3分
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{1}{2}$,
∵C∈(0,π),
∴C=$\frac{π}{3}$…6分
(2)由c=4及(1)可得:16=a2+b2-ab=(a+b)2-3ab≥(a+b)2-$\frac{3(a+b)^{2}}{4}$,…8分
∴解得:a+b≤8,…10分
又∵a+b>c=4,
∴a+b∈(4,8]…12分

点评 本题主要考查了正弦定理,余弦定理,基本不等式,两边之和大于第三边等知识在解三角形中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网