题目内容

13.已知数列{an}中,Sn为{an}的前n项和,且Sn=$\frac{{1-{a_n}}}{2}$.
(1)求数列{an}的通项公式;
(2)设bn=log3a1+log3a2+…+log3an,求数列$\left\{{\left.{\frac{1}{b_n}}\right\}}$的前n项和Tn

分析 (1)利用an与Sn之间的关系、计算可知数列{an}构成首项、公比均为$\frac{1}{3}$的等比数列,进而计算可得结论;
(2)通过(1)可知log3an=-n,从而bn=-$\frac{n(n+1)}{2}$,裂项可知$\frac{1}{{b}_{n}}$=-2($\frac{1}{n}$-$\frac{1}{n+1}$),进而并项相加即得结论.

解答 解:(1)当n≥2时,an=Sn-Sn-1
=$\frac{{1-{a_n}}}{2}$-$\frac{1-{a}_{n-1}}{2}$,
整理得:an=$\frac{1}{3}$an-1
当n=1时,a1=$\frac{1-{a}_{1}}{2}$,即a1=$\frac{1}{3}$,
∴数列{an}是首项、公比均为$\frac{1}{3}$的等比数列,
∴其通项公式an=$\frac{1}{{3}^{n}}$;
(2)由(1)可知log3an=log3$\frac{1}{{3}^{n}}$=-n,
∴bn=log3a1+log3a2+…+log3an
=-(1+2+…+n)
=-$\frac{n(n+1)}{2}$,
∴$\frac{1}{{b}_{n}}$=-$\frac{2}{n(n+1)}$=-2($\frac{1}{n}$-$\frac{1}{n+1}$),
∴Tn=-2(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$)
=-2(1-$\frac{1}{n+1}$)
=-$\frac{2n}{n+1}$.

点评 本题考查数列的通项及前n项和,利用an与Sn之间的关系以及裂项、并项相加法是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网