题目内容
4.已知抛物线y=x2-1上一点B(-1,0),若抛物线上存在两点P,Q,且使得PQ⊥PB,则Q点横坐标的取值范围为(-∞,-3]∪[1,+∞).分析 先假设P,Q的坐标,利用PQ⊥PB,可得斜率之积为-1,从而可得方程,再利用方程根的判别式大于等于0,即可求得Q点的横坐标的取值范围.
解答 解:设P(t,t2-1),Q(s,s2-1)
∵BP⊥PQ,
∴$\frac{{t}^{2}-1}{t+1}$•$\frac{{t}^{2}-{s}^{2}}{t-s}$=-1,
即t2+(s-1)t-s+1=0
∵t∈R,P,Q是抛物线上两个不同的点
∴必须有△=(s-1)2+4(s-1)≥0.
即s2+2s-3≥0,
解得s≤-3或s≥1.
∴Q点的横坐标的取值范围是 (-∞,-3]∪[1,+∞)
故答案为:(-∞,-3]∪[1,+∞).
点评 本题重点考考查取值范围问题,解题的关键是利用两直线垂直的条件:斜率之积为-1构建方程,再利用方程根的判别式大于等于0进行求解.
练习册系列答案
相关题目
16.直线a和面α所成角为60°,b?α,则a,b所成角的范围是( )
| A. | [0°,90°] | B. | [30°,90°] | C. | [60°,90°] | D. | [60°,120°] |
15.有甲乙两个班级进行数学考试,统计成绩后,得到如下列联表:
(Ⅰ)请完成上面的列联表;
(Ⅱ)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系”.
参考数据:
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d)
| 优秀 | 非优秀 | 总计 | |
| 甲班 | 45 | ||
| 乙班 | 20 | ||
| 合计 | 30 | 105 |
(Ⅱ)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系”.
参考数据:
| P(K2≥k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
14.两同心圆x2+y2=25和x2+y2=16,从外圆上一点作内圆的两条切线,两条切线的夹角为( )
| A. | arctan$\frac{4}{3}$ | B. | 2arctan$\frac{4}{3}$ | C. | π-arctan$\frac{4}{3}$ | D. | π-2arctan$\frac{4}{3}$ |