题目内容
20.已知x>0,y>0,且4x+$\frac{1}{x}$+y+$\frac{9}{y}$=26,则函数F(x,y)=4x+y的最大值与最小值的差为( )| A. | 24 | B. | 25 | C. | 26 | D. | 27 |
分析 设4x+y=m∈(0,26).由于x>0,y>0,且4x+$\frac{1}{x}$+y+$\frac{9}{y}$=26,可得:$\frac{1}{x}$+$\frac{9}{y}$=26-m.变形为:26-m=$\frac{1}{m}$(4x+y)$(\frac{1}{x}+\frac{9}{y})$,利用基本不等式的性质即可得出.
解答 解:设4x+y=m∈(0,26).
∵x>0,y>0,且4x+$\frac{1}{x}$+y+$\frac{9}{y}$=26,
∴$\frac{1}{x}$+$\frac{9}{y}$=26-m.
∴26-m=$\frac{1}{m}$(4x+y)$(\frac{1}{x}+\frac{9}{y})$=$\frac{1}{m}$$(13+\frac{y}{x}+\frac{36x}{y})$≥$\frac{1}{m}(13+2\sqrt{\frac{y}{x}•\frac{36x}{y}})$=$\frac{25}{m}$,当且仅当y=6x时取等号.
化为:m2-26m+25≤0,
解得1≤m≤25,
∴函数F(x,y)=4x+y的最大值与最小值的差=25-1=24.
故选:A.
点评 本题考查了基本不等式的性质、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
10.若m,n是两条不同的直线,m⊥平面α,则“m⊥n”是“n∥α”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
11.已知k∈Z,则(tan$\frac{5π}{12}$)k(tan$\frac{π}{12}$)k+2的值为( )
| A. | 7+4$\sqrt{3}$ | B. | 7-4$\sqrt{3}$ | C. | 2+$\sqrt{3}$ | D. | 2-$\sqrt{3}$ |
15.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),若焦点F(c,0)关于渐近线y=$\frac{b}{a}$x的对称点在另一条渐近线y=-$\frac{b}{a}$x上,则双曲线的离心率为( )
| A. | $\sqrt{2}$ | B. | 2 | C. | $\sqrt{3}$ | D. | 3 |
12.已知命题p:在调查某校高一学生的平均身高时宜采用系统抽样;命题q:在频率分布直方图中,中位数左边和右边的直方图的面积相等,则下列命题中为真命题的是( )
| A. | ¬q | B. | p∨(¬q) | C. | (¬p)∧q | D. | p∧q |