题目内容

14.进入冬季以来,我国北方地区的雾霾天气持续出现,极大的影响了人们的健康和出行,我市环保局对该市2015年进行为期一年的空气质量监测,得到每天的空气质量指数,从中随机抽取50个作为样本进行分析报告,样本数据分组区间为(5,15],(15,25],(25,35],(35,45],由此得到样本的空气质量指数频率分布直方图,如图.
(1)求a的值;
(2)如果空气质量指数不超过15,就认定空气质量为“特优等级”,则从今年的监测数据中随机抽取3天的数值,其中达到“特优等级”的天数为X.求X的分布列和数学期望.

分析 (1)由频率分布直方图中小矩形面积之和为1,由此能求出a.
(2)由已知得X的取值为0,1,2,3,且X~B(3,$\frac{1}{5}$),由此能求出X的分布列和EX.

解答 解:(1)由频率分布直方图中小矩形面积之和为1,
得:(0.02+0.032+a+0.018)×10=1,
解得a=0.03.
(2)利用样本估计总体,该年度空所质量指数在(5,15]内为“特优等级”,
且指数达到“特优等级”的概率为0.2,
则X的取值为0,1,2,3,且X~B(3,$\frac{1}{5}$),
P(X=0)=${C}_{3}^{0}(\frac{4}{5})^{3}$=$\frac{64}{125}$,
P(X=1)=${C}_{3}^{1}(\frac{1}{5})(\frac{4}{5})^{2}$=$\frac{48}{125}$,
P(X=2)=${C}_{3}^{2}(\frac{1}{5})^{2}(\frac{4}{5})$=$\frac{12}{125}$,
P(X=3)=${C}_{3}^{3}(\frac{1}{5})^{3}=\frac{1}{125}$,
∴X的分布列为:

 X 0 1 2 3
 P $\frac{64}{125}$ $\frac{48}{125}$ $\frac{12}{125}$ $\frac{1}{125}$
∴EX=0×$\frac{64}{125}$+1×$\frac{48}{125}$+2×$\frac{12}{125}$+3×$\frac{1}{125}$=$\frac{3}{5}$.

点评 本题考查频率分布直方图的应用,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网