题目内容
14.(1)求a的值;
(2)如果空气质量指数不超过15,就认定空气质量为“特优等级”,则从今年的监测数据中随机抽取3天的数值,其中达到“特优等级”的天数为X.求X的分布列和数学期望.
分析 (1)由频率分布直方图中小矩形面积之和为1,由此能求出a.
(2)由已知得X的取值为0,1,2,3,且X~B(3,$\frac{1}{5}$),由此能求出X的分布列和EX.
解答 解:(1)由频率分布直方图中小矩形面积之和为1,
得:(0.02+0.032+a+0.018)×10=1,
解得a=0.03.
(2)利用样本估计总体,该年度空所质量指数在(5,15]内为“特优等级”,
且指数达到“特优等级”的概率为0.2,
则X的取值为0,1,2,3,且X~B(3,$\frac{1}{5}$),
P(X=0)=${C}_{3}^{0}(\frac{4}{5})^{3}$=$\frac{64}{125}$,
P(X=1)=${C}_{3}^{1}(\frac{1}{5})(\frac{4}{5})^{2}$=$\frac{48}{125}$,
P(X=2)=${C}_{3}^{2}(\frac{1}{5})^{2}(\frac{4}{5})$=$\frac{12}{125}$,
P(X=3)=${C}_{3}^{3}(\frac{1}{5})^{3}=\frac{1}{125}$,
∴X的分布列为:
| X | 0 | 1 | 2 | 3 |
| P | $\frac{64}{125}$ | $\frac{48}{125}$ | $\frac{12}{125}$ | $\frac{1}{125}$ |
点评 本题考查频率分布直方图的应用,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.
练习册系列答案
相关题目
2.
某糖厂为了解一条自动生产线上生产袋装白糖的重量,从1000袋白糖中,随机抽取100袋并称出每袋白糖的重量(单位:g),得到如下频率分布表:
(1)请补充完成频率分布表,并在下图中画出频率分布直方图;
(2)根据上述数据估计从这批白糖中随机抽取一袋其重量在[495.5,505.5]上的概率.
(1)请补充完成频率分布表,并在下图中画出频率分布直方图;
(2)根据上述数据估计从这批白糖中随机抽取一袋其重量在[495.5,505.5]上的概率.
| 分组 | 频数 | 频率 |
| [485.5,490.5) | 10 | |
| [490.5,495.5) | 0.20 | |
| [495.5,500.5) | 50 | |
| [500.5,505.5] | ||
| 合计 | 100 |
9.某品牌汽车4S店,对该品牌旗下的A型、B型、C型汽车进行维修保养,每辆车一年内需要维修的人工费用为200元,汽车4S店记录了该品牌三种类型汽车各100辆到店维修的情况,整理得下表:
假设该店采用分层抽样的方法从上维修的100辆该品牌三种类型汽车中随机抽取10辆进行问卷回访.
(1)从参加问卷到访的10辆汽车中随机抽取两辆,求这两辆汽车来自同一类型的概率;
(2)某公司一次性购买该品牌A、B、C型汽车各一辆,记ξ表示这三辆车的一年维修人工费用总和,求ξ的分布列及数学期望(各型汽车维修的概率视为其需要维修的概率);
(3)经调查,该品牌A型汽车的价格与每月的销售量之间有如下关系:
已知A型汽车的购买量y与价格x符合如下线性回归方程:$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+80,若A型汽车价格降到19万元,请你预测月销售量大约是多少?
| 车型 | A型 | B型 | C型 |
| 频数 | 20 | 40 | 40 |
(1)从参加问卷到访的10辆汽车中随机抽取两辆,求这两辆汽车来自同一类型的概率;
(2)某公司一次性购买该品牌A、B、C型汽车各一辆,记ξ表示这三辆车的一年维修人工费用总和,求ξ的分布列及数学期望(各型汽车维修的概率视为其需要维修的概率);
(3)经调查,该品牌A型汽车的价格与每月的销售量之间有如下关系:
| 价格(万元) | 25 | 23.5 | 22 | 20.5 |
| 销售量(辆) | 30 | 33 | 36 | 39 |