题目内容
已知数列{an}满足a1+
+…+
=2n-1(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
,求数列{bn}的前n项和Sn.
| a2 |
| 2 |
| an |
| n |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
| 2n-1 |
| (n+1)an |
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)由a1+
+…+
=2n-1⇒a1+
+…+
=2n-1-1(n≥2),两式相减即可求得数列{an}的通项公式;
(Ⅱ)由(Ⅰ)知an=n•2n-1,利用裂项法可求得bn=
=
=
=
-
,从而可求得数列{bn}的前n项和Sn.
| a2 |
| 2 |
| an |
| n |
| a2 |
| 2 |
| an-1 |
| n-1 |
(Ⅱ)由(Ⅰ)知an=n•2n-1,利用裂项法可求得bn=
| 2n-1 |
| (n+1)an |
| 2n-1 |
| n(n+1)2n-1 |
| 1 |
| n(n-1) |
| 1 |
| n |
| 1 |
| n+1 |
解答:
解:(Ⅰ)∵a1+
+…+
=2n-1,①
∴当n≥2时,a1+
+…+
=2n-1-1,②
①-②得:
=2n-1,
∴an=n•2n-1;
(Ⅱ)∵bn=
=
=
=
-
,
∴Sn=(1-
)+(
-
)+…+(
-
)=1-
=
.
| a2 |
| 2 |
| an |
| n |
∴当n≥2时,a1+
| a2 |
| 2 |
| an-1 |
| n-1 |
①-②得:
| an |
| n |
∴an=n•2n-1;
(Ⅱ)∵bn=
| 2n-1 |
| (n+1)an |
| 2n-1 |
| n(n+1)2n-1 |
| 1 |
| n(n-1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Sn=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| n |
| n+1 |
点评:本题考查数列的求和,着重考查数列的递推关系的应用,突出裂项法求和的考查,属于中档题.
练习册系列答案
相关题目
| π |
| 2 |
A、向左平移
| ||
B、向右平移
| ||
C、向左平移
| ||
D、向右平移
|