题目内容

已知数列{an}满足a1+
a2
2
+…+
an
n
=2n-1(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
2n-1
(n+1)an
,求数列{bn}的前n项和Sn
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)由a1+
a2
2
+…+
an
n
=2n-1⇒a1+
a2
2
+…+
an-1
n-1
=2n-1-1(n≥2),两式相减即可求得数列{an}的通项公式;
(Ⅱ)由(Ⅰ)知an=n•2n-1,利用裂项法可求得bn=
2n-1
(n+1)an
=
2n-1
n(n+1)2n-1
=
1
n(n-1)
=
1
n
-
1
n+1
,从而可求得数列{bn}的前n项和Sn
解答: 解:(Ⅰ)∵a1+
a2
2
+…+
an
n
=2n-1,①
∴当n≥2时,a1+
a2
2
+…+
an-1
n-1
=2n-1-1,②
①-②得:
an
n
=2n-1
∴an=n•2n-1
(Ⅱ)∵bn=
2n-1
(n+1)an
=
2n-1
n(n+1)2n-1
=
1
n(n-1)
=
1
n
-
1
n+1

∴Sn=(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)=1-
1
n+1
=
n
n+1
点评:本题考查数列的求和,着重考查数列的递推关系的应用,突出裂项法求和的考查,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网