题目内容

18.已知数列{an}是等差数列,Sn为其前n项和,若平面上的三点A,B,C共线,且$\overrightarrow{OA}$=a4$\overrightarrow{OB}$+a97$\overrightarrow{OC}$,则S100=(  )
A.100B.101C.50D.51

分析 由平面上的三点A,B,C共线,知$\overrightarrow{OA}$=a4$\overrightarrow{OB}$+a97$\overrightarrow{OC}$中有a4+a97=1,根据等差数列的等差中项性质求得S100

解答 解∵平面上的三点A,B,C共线,且$\overrightarrow{OA}$=a4$\overrightarrow{OB}$+a97$\overrightarrow{OC}$
∴a4+a97=1,
又∵数列{an}是等差数列,
∴a4+a97=a1+a100
∴${S}_{100}=\frac{100{(a}_{1}+{a}_{100})}{2}$=50(a4+a97)=50
故选择:C.

点评 本题考查等差数列中等差中项的性质,三点共线的常用结论.考查了整体代换的思想.属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网