题目内容
11.设过曲线f(x)=-ex-x+3a上任意一点处的切线为l1,总存在过曲线g(x)=(x-1)a+2cosx上一点处的切线l2,使得l1⊥l2,则实数a的取值范围为( )| A. | [-1,1] | B. | [-2,2] | C. | [-2,1] | D. | [-1,2] |
分析 求出函数f(x)=-ex-x+3a的导函数,进一步求得$\frac{1}{1+{e}^{x}}$∈(0,1),再求出g(x)的导函数的范围,然后把过曲线f(x)=-ex-x+3a上任意一点的切线为l1,总存在过曲线g(x)=a(x-1)+2cosx上一点处的切线l2,使得l1⊥l2转化为集合间的关系求解.
解答 解:由f(x)=-ex-x,得f′(x)=-ex-1,
∵ex+1>1,∴$\frac{1}{1+{e}^{x}}$∈(0,1),
由g(x)=(x-1)a+2cosx,得g′(x)=a-2sinx,
又-2sinx∈[-2,2],
∴a-2sinx∈[-2+a,2+a],
要使过曲线f(x)=-ex-x+3a上任意一点的切线为l1,
总存在过曲线g(x)=a(x-1)+2cosx上一点处的切线l2,使得l1⊥l2,
则$\left\{\begin{array}{l}{a-2≤0}\\{a+2≥1}\end{array}\right.$,解得-1≤a≤2.
即a的取值范围为[-1,2].
故选:D.
点评 本题考查了利用导数研究过曲线上的某点的切线方程,考查了数学转化思想方法,解答此题的关键是把问题转化为集合间的关系求解,是中档题.
练习册系列答案
相关题目
17.已知△ABC中,满足b=2,B=60°的三角形有两解,则边长a的取值范围是( )
| A. | $\frac{\sqrt{3}}{2}$<a<2 | B. | $\frac{1}{2}$<a<2 | C. | 2<a<$\frac{4\sqrt{3}}{3}$ | D. | 2<a<2$\sqrt{3}$ |
18.已知m是两个正数2,8的等比中项,则圆锥曲线${x^2}+\frac{y^2}{m}=1$的离心率为( )
| A. | $\frac{{\sqrt{3}}}{2}$或$\frac{{\sqrt{5}}}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\sqrt{5}$ | D. | $\frac{{\sqrt{3}}}{2}$或$\sqrt{5}$ |
15.设a=${log_{\frac{1}{3}}}$2,b=${log_{\frac{1}{2}}}\frac{1}{3}$,c=${(\frac{1}{2})^{0.3}}$,则( )
| A. | a<b<c | B. | b<a<c | C. | b<c<a | D. | a<c<b |
6.已知对k∈R,直线y-kx-1=0与椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{m}$=1恒有公共点,则实数m的取值范围( )
| A. | (1,4] | B. | [1,4) | C. | [1,4)∪(4,+∞) | D. | (4,+∞) |
16.{an}是a1=2,d=2的等差数列,其前n项和公式为( )
| A. | Sn=n2-n | B. | Sn=n2-2n | C. | Sn=n2+n | D. | Sn=n2+2n |
3.下列说法正确的是( )
| A. | 集合M={x|0<x≤3},N={x|0<x≤2},则“a∈M”是“a∈N”的充分不必要条件 | |
| B. | 命题“若a∈M,则b∉M”的否命题是“若a∉M,则b∈M” | |
| C. | “|a|>|b|”是“a2>b2”的必要不充分条件 | |
| D. | 命题“若a,b都是奇数,则a+b是偶数”的逆否命题是“若a+b不是偶数,则a,b都不是奇数” |
20.已知如表为“五点法”绘制函数f(x)=Asin(ωx+φ)图象时的五个关键点的坐标(其中A>0,ω>0,|φ|<π).
(Ⅰ) 请写出函数f(x)的解析式,并求函数f(x)的单调递增区间;
(Ⅱ) 求函数f(x)在区间$[0,\frac{π}{2}]$上的取值范围.
| x | $-\frac{π}{6}$ | $\frac{π}{12}$ | $\frac{π}{3}$ | $\frac{7π}{12}$ | $\frac{5π}{6}$ |
| f(x) | 0 | 2 | 0 | -2 | 0 |
(Ⅱ) 求函数f(x)在区间$[0,\frac{π}{2}]$上的取值范围.