ÌâÄ¿ÄÚÈÝ

18£®¼«×ø±êÓëÖ±½Ç×ø±êϵÓÐÏàͬµÄ³¤¶Èµ¥Î»£¬ÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖᣬÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=2+\frac{t}{2}}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñsin2¦È=4cos¦È
£¨1£©ÇóCµÄÖ±½Ç×ø±ê·½³Ì
£¨2£©ÉèÖ±ÏßlÓëÇúÏßC½»ÓÚA£¬BÁ½µã£¬ÇóABµÄ³¤£®

·ÖÎö £¨1£©ÓɦÑsin2¦È=4cos¦È£¬µÃ¦Ñ2sin2¦È=4¦Ñcos¦È£¬¼´¿ÉÇóCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©½«Ö±ÏßlµÄ·½³Ì´úÈëy2=4x£¬²¢ÕûÀíµÃ£¬3t2-8t-32=0£¬ÀûÓòÎÊýµÄ¼¸ºÎÒâÒ壬¼´¿ÉÇóÏÒ³¤|AB|£®

½â´ð ½â£º£¨1£©ÓɦÑsin2¦È=4cos¦È£¬µÃ¦Ñ2sin2¦È=4¦Ñcos¦È£¬
¼´ÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪy2=4x
£¨2£©½«Ö±ÏßlµÄ·½³Ì´úÈëy2=4x£¬²¢ÕûÀíµÃ£¬3t2-8t-32=0£¬
¡àt1+t2=$\frac{8}{3}$£¬t1t2=-$\frac{32}{3}$£¬
ËùÒÔ|AB|=|t1-t2|=$\sqrt{{{£¨t}_{1}{+t}_{2}£©}^{2}-{{4t}_{1}t}_{2}}$=$\frac{8\sqrt{7}}{3}$£®

µãÆÀ ±¾Ì⿼²é¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬¿¼²é²ÎÊýµÄ¼¸ºÎÒâÒåµÄÔËÓã¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø