ÌâÄ¿ÄÚÈÝ
18£®¼«×ø±êÓëÖ±½Ç×ø±êϵÓÐÏàͬµÄ³¤¶Èµ¥Î»£¬ÒÔÔµãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖᣬÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=2+\frac{t}{2}}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñsin2¦È=4cos¦È£¨1£©ÇóCµÄÖ±½Ç×ø±ê·½³Ì
£¨2£©ÉèÖ±ÏßlÓëÇúÏßC½»ÓÚA£¬BÁ½µã£¬ÇóABµÄ³¤£®
·ÖÎö £¨1£©ÓɦÑsin2¦È=4cos¦È£¬µÃ¦Ñ2sin2¦È=4¦Ñcos¦È£¬¼´¿ÉÇóCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©½«Ö±ÏßlµÄ·½³Ì´úÈëy2=4x£¬²¢ÕûÀíµÃ£¬3t2-8t-32=0£¬ÀûÓòÎÊýµÄ¼¸ºÎÒâÒ壬¼´¿ÉÇóÏÒ³¤|AB|£®
½â´ð ½â£º£¨1£©ÓɦÑsin2¦È=4cos¦È£¬µÃ¦Ñ2sin2¦È=4¦Ñcos¦È£¬
¼´ÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪy2=4x
£¨2£©½«Ö±ÏßlµÄ·½³Ì´úÈëy2=4x£¬²¢ÕûÀíµÃ£¬3t2-8t-32=0£¬
¡àt1+t2=$\frac{8}{3}$£¬t1t2=-$\frac{32}{3}$£¬
ËùÒÔ|AB|=|t1-t2|=$\sqrt{{{£¨t}_{1}{+t}_{2}£©}^{2}-{{4t}_{1}t}_{2}}$=$\frac{8\sqrt{7}}{3}$£®
µãÆÀ ±¾Ì⿼²é¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬¿¼²é²ÎÊýµÄ¼¸ºÎÒâÒåµÄÔËÓã¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
8£®ÉèËæ»ú±äÁ¿¦Î¡«N£¨2£¬1£©£¬ÈôP£¨¦Î£¾3£©=m£¬Ôòp£¨1£¼¦Î£¼3£©µÈÓÚ£¨¡¡¡¡£©
| A£® | $\frac{1}{2}$-2m | B£® | 1-m | C£® | 1-2m | D£® | $\frac{1}{2}$-m |
9£®ÈôÔÚÇø¼ä[-1£¬5]ÉÏÈÎȡһ¸öÊýb£¬Ôòº¯Êýf£¨x£©=£¨x-b-1£©exÔÚ£¨3£¬+¡Þ£©ÉÏÊǵ¥µ÷º¯ÊýµÄ¸ÅÂÊΪ£¨¡¡¡¡£©
| A£® | $\frac{1}{2}$ | B£® | $\frac{1}{3}$ | C£® | $\frac{2}{3}$ | D£® | $\frac{2}{5}$ |
6£®ÔÚ¡÷ABCÖУ¬$a=2\sqrt{2}£¬b=3£¬A=45¡ã$£¬Ôò´ËÈý½ÇÐνâµÄ¸öÊýΪ£¨¡¡¡¡£©
| A£® | 0 | B£® | 1 | C£® | 2 | D£® | ²»È·¶¨ |
13£®º¯Êýy=f£¨x£©ÊǶ¨ÒåÔÚ£¨0£¬+¡Þ£©ÉÏΪÔöº¯Êý£¬ÇÒf£¨2m£©£¾f£¨-m+9£©£¬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | £¨0£¬9£© | B£® | £¨3£¬9£© | C£® | £¨3£¬+¡Þ£© | D£® | £¨-¡Þ£¬-3£©¡È£¨3£¬+¡Þ£© |
3£®ÒÑÖªµãA£¨-1£¬0£©£¬B£¨1£¬0£©ÎªË«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄ×óÓÒ¶¥µã£¬µãMÔÚË«ÇúÏßÉÏ£¬¡÷ABMΪµÈÑüÈý½ÇÐΣ¬ÇÒ¶¥½ÇΪ120¡ã£¬Ôò¸ÃË«ÇúÏߵıê×¼·½³ÌΪ£¨¡¡¡¡£©
| A£® | x2-$\frac{{y}^{2}}{4}$=1 | B£® | x2-$\frac{{y}^{2}}{3}$=1 | C£® | x2-y2=1 | D£® | x2-$\frac{{y}^{2}}{2}$=1 |