题目内容

17.若sinα=-$\frac{3}{5}$,α是第三象限的角,则$\frac{cos\frac{α}{2}+sin\frac{α}{2}}{cos\frac{α}{2}-sin\frac{α}{2}}$等于(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.2D.-2

分析 由α为第三象限角,根据sinα的值,利用同角三角函数间基本关系求出cosα的值,原式分子分母乘以分子,利用同角三角函数间的基本关系及二倍角的余弦函数公式化简,将各自的值代入计算即可求出值.

解答 解:∵α是第三象限的角,sinα=-$\frac{3}{5}$,
∴cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{4}{5}$,
则$\frac{cos\frac{α}{2}+sin\frac{α}{2}}{cos\frac{α}{2}-sin\frac{α}{2}}$=$\frac{(cos\frac{α}{2}+sin\frac{α}{2})^{2}}{co{s}^{2}\frac{α}{2}-si{n}^{2}\frac{α}{2}}$=$\frac{1+sinα}{cosα}$=-$\frac{1}{2}$.
故选:B.

点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网