题目内容
10.若圆(x-1)2+y2=25的弦AB被点P(2,1)平分,则直线AB的方程为( )| A. | 2x+y-3=0 | B. | x+y-3=0 | C. | x-y-1=0 | D. | 2x-y-5=0 |
分析 由圆的方程找出圆心C的坐标,连接CP,由P为弦AB的中点,根据垂径定理的逆定理得到CP垂直于AB,根据两直线垂直时斜率的乘积为-1,由P与C的坐标求出直线PC的斜率,进而确定出弦AB所在直线的斜率,由P的坐标及求出的斜率,写出直线AB的方程即可.
解答 解:由圆(x-1)2+y2=25,得到圆心C坐标为(1,0),
又P(2,1),∴kPC=1,
∴弦AB所在的直线方程斜率为-1,又P为AB的中点,
则直线AB的方程为y-1=-(x-2),即x+y-3=0.
故选B.
点评 此题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,垂径定理,两直线垂直时斜率满足的关系,以及直线的点斜式方程,根据题意得出直线PC与直线AB垂直是解本题的关键.
练习册系列答案
相关题目
5.过A(0,1),B(3,5)两点的直线的斜率是( )
| A. | $\frac{4}{3}$ | B. | $\frac{3}{4}$ | C. | $-\frac{4}{3}$ | D. | $-\frac{3}{4}$ |
2.已知函数y=f(2x)+2x是偶函数,且f(2)=1,则f(-2)=( )
| A. | 5 | B. | 4 | C. | 3 | D. | 2 |
19.已知f(x)是定义在R上的偶函数,且f(x)在[0,+∞)是减函数,若f(lgx)>f(1),则x的取值范围是( )
| A. | $(\frac{1}{10},10)$ | B. | (0,10) | C. | (10,+∞) | D. | $(0,\frac{1}{10})∪(10,+∞)$ |