题目内容
已知公差不为零的等差数列{an},满足a3=5且a1,a2,a4成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
,记数列{bn}前n项的和为Tn,当Tn≤λ恒成立时,求实数λ的取值范围.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
| 1 |
| anan+1 |
考点:数列与不等式的综合,等比数列的性质
专题:等差数列与等比数列
分析:(Ⅰ)设出等差数列的首项,由题意列式求出首项和公差,代入等差数列的通项公式得答案;
(Ⅱ)把等差数列的通项代入bn=
,整理后利用列项相消法求出数列{bn}前n项的和为Tn,放缩后可得满足Tn≤λ恒成立的实数λ的取值范围.
(Ⅱ)把等差数列的通项代入bn=
| 1 |
| anan+1 |
解答:
解:(Ⅰ)设等差数列{an}的公差为d,
由题意有a1+2d=5, (a1+d)2=a1(a1+3d),
又a1≠0,
解得:a1=
,d=
,
∴an=
n(n∈N*);
(Ⅱ)由题意an=
n,
∴bn=
=
(
-
),
∴Tn=
[(1-
)+(
-
)+…+(
-
)]
=
(1-
)<
.
∵Tn≤λ恒成立,
∴λ的取值范围是:λ≥
.
由题意有a1+2d=5, (a1+d)2=a1(a1+3d),
又a1≠0,
解得:a1=
| 5 |
| 3 |
| 5 |
| 3 |
∴an=
| 5 |
| 3 |
(Ⅱ)由题意an=
| 5 |
| 3 |
∴bn=
| 1 | ||||
|
| 9 |
| 25 |
| 1 |
| n |
| 1 |
| n+1 |
∴Tn=
| 9 |
| 25 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=
| 9 |
| 25 |
| 1 |
| n+1 |
| 9 |
| 25 |
∵Tn≤λ恒成立,
∴λ的取值范围是:λ≥
| 9 |
| 25 |
点评:本题考查了数列与不等式的综合,训练了裂项相消法求数列的和,考查了利用放缩法证明数列不等式,是中档题.
练习册系列答案
相关题目
函数f(x)=(x+2)2(x-1)3的极大值点是( )
| A、x=-2或1 |
| B、x=-1或2 |
| C、x=-1 |
| D、x=-2 |