题目内容

8.在△ABC中,角A、B、C的对边分别为a,b,c,且b(2sinB+sinA)+(2a+b)sinA=2csinC,则C=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

分析 由正弦定理化简已知等式可得b2+a2-c2=-ab,由余弦定理可得cosC的值,结合范围C∈(0,π),即可解得C的值.

解答 解:∵b(2sinB+sinA)+(2a+b)sinA=2csinC,
∴由正弦定理可得:b(2b+a)+(2a+b)a=2c2,整理可得:b2+a2-c2=-ab,
∴由余弦定理可得:cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{-ab}{2ab}$=-$\frac{1}{2}$,
∵C∈(0,π),
∴C=$\frac{2π}{3}$.
故选:C.

点评 本题主要考查了正弦定理,余弦定理,特殊角的三角函数值在解三角形中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网