题目内容
2.某校高一(1)班50个学生选择校本课程,他们在A、B、C三个模块中进行选择,且至少需要选择1个模块,具体模块选择的情况如表:| 模块 | 模块选择的学生人数 | 模块 | 模块选择的学生人数 |
| A | 28 | A与B | 11 |
| B | 26 | A与C | 12 |
| C | 26 | B与C | 13 |
分析 根据已知条件设三个模块都选择的学生人数是x,结合card(A∪B∪C)=card(A)+card(B)+card-card(A∩B)-card(B∩C)-card(C∩A)+card(A∩B∩C),构造关于x的方程,解出x值后,进而可得三个模块都选择的学生人数.
解答 解:设A={选修A的学生},B={选修B的学生},C={选修C的学生}
则A∪B∪C={高三(1)班全体学生},A∩B∩C={三个模块都选择的学生}
设Card(A∩B∩C)=x,
由题意知card(A∪B∪C)=50,Card(A)=28,Card(B)=26,Card(C)=26,
Card(A∩B)=11,Card(A∩C)=12,Card(B∩C)=13,
∵card(A∪B∪C)
=card(A)+card(B)+card-card(A∩B)-card(B∩C)-card(C∩A)+card(A∩B∩C),
∴50=28+26+26-11-12-13+x
解得x=6
故答案为:6
点评 本题以“Venn图表达集合的关系及运算”为载体,考查了集合元素个数关系公式card(A∪B∪C)=card(A)+card(B)+card-card(A∩B)-card(B∩C)-card(C∩A)+card(A∩B∩C),其中正确理解集合之间的关系,是解答的关键.
练习册系列答案
相关题目
10.设$a={log_3}\frac{1}{2}$,$b={({\frac{1}{2}})^3}$,$c={3^{\frac{1}{2}}}$,则( )
| A. | a<b<c | B. | c<b<a | C. | c<a<b | D. | b<a<c |
14.已知椭圆的标准方程为${x^2}+\frac{y^2}{10}=1$,则椭圆的焦点坐标为( )
| A. | (-3,0),(3,0) | B. | (0,-3),(0,3) | C. | (-$\sqrt{10}$,0),($\sqrt{10}$,0) | D. | (0,-$\sqrt{10}$),(0,$\sqrt{10}$) |
11.等比数列{an}的各项均为正数,且a5a6+a4a7=18,则log3a1+log3a2+…+log3a10=( )
| A. | 1+log35 | B. | 2+log35 | C. | 12 | D. | 10 |
12.已知命题p:?x∈R,x2+1<2x;命题q:ax2-ax-1<0恒成立,则-4<a<0,那么( )
| A. | “非p”是假命题 | B. | “非q”是真命题 | C. | “p且q”为真命题 | D. | “p或q”为真命题 |