题目内容
18.方程(x2+y2-1)($\sqrt{x-3}$-1)=0表示的曲线是( )| A. | 一条直线 | B. | 一条射线 | ||
| C. | 一条直线和一个圆 | D. | 一条射线和一个圆 |
分析 将方程等价变形,即可得出结论.
解答 解:由题意(x2+y2-1)($\sqrt{x-3}$-1)=0可化为$\sqrt{x-3}$-1=0或x2+y2-1=0(x-3≥0)
∵x2+y2-1=0(x-3≥0)不成立,
∴x-4=0,
∴方程(x2+y2-1)($\sqrt{x-3}$-1)=0表示的曲线是一条直线.
故选:A.
点评 本题考查轨迹方程,考查学生分析解决问题的能力,属于基础题.
练习册系列答案
相关题目
8.已知定义在正实数集上的函数f(x)的导函数f′(x)满足f′(x)<$\frac{f(x)}{x}$,则对任意x1,x2∈(0,+∞),下列不等式一定成立的是( )
| A. | f(x1+x2)>f(x1)+f(x2) | B. | f(x1+x2)<f(x1)+f(x2) | C. | f(x1x2)>f(x1)+f(x2) | D. | f(x1x2)<f(x1)+f(x2) |
9.直线y=x被x2+(y+2)2=4截得的弦长是( )
| A. | $\sqrt{2}$ | B. | 2$\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2$\sqrt{3}$ |
13.f(x)=$\left\{\begin{array}{l}{sin(\frac{π}{2}x+\frac{π}{6}),x≤2015}\\{f(x-4),x>2015}\end{array}\right.$,则f(2014)+f(2015)+f(2016)=( )
| A. | 1+$\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | 1-$\frac{\sqrt{3}}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
7.已知向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$不共面,则满足A,B,C,P四点共面的条件是( )
| A. | $\overrightarrow{OP}$=2x$\overrightarrow{AO}$+3y$\overrightarrow{BO}$+4z$\overrightarrow{CO}$,且2x+3y+4z=1 | B. | $\overrightarrow{OP}$+$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$ | ||
| C. | $\overrightarrow{AP}$=$\overrightarrow{AB}$+3$\overrightarrow{AC}$ | D. | $\overrightarrow{AP}$=2$\overrightarrow{OB}$-$\overrightarrow{OC}$ |
8.“x>3”是“x>5”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既充分也不必要条件 |