题目内容
5.已知数列{an}是首项为正数的等差数列,a1•a2=3,a2•a3=15.(1)求数列{an}的通项公式;
(2)设bn=(an+1)•2${\;}^{{a}_{n}}$,求数列{bn}的前n项和Tn.
分析 (1)设数列{an}的公差为d,由a1•a2=3,a2•a3=15.解得a1=1,d=2,即可得an=2n-1.
(2)由(1)知bn=(an+1)•2${\;}^{{a}_{n}}$=2n•22n-4=n•4n,利用错位相减法求和即可
解答 解:(1)设数列{an}的公差为d,
因为a1•a2=3,a2•a3=15.
解得a1=1,d=2,所以an=2n-1.
(2)由(1)知bn=(an+1)•2${\;}^{{a}_{n}}$=2n•22n-4=n•4n,
Tn=1•41+2•42+3•43+…+n•4n.
4Tn=1•42+2•43+…+(n-1)•4n+n•4n+1,
两式相减,得-3Tn=41+42+43+…+4n-n•4n+1
=$\frac{4(1-{4}^{n})}{1-4}$-n•4n+1=$\frac{1-3n}{3}×{4}^{n-1}-\frac{4}{3}$,
所以Tn=$\frac{4+(3n-1)•{4}^{n+1}}{9}$.
点评 本题考查了等差数列的通项,考查了错位相减法求和,属于中档题.
练习册系列答案
相关题目
16.用秦九韶算法计算多项式f(x)=2x6+5x5+6x4+23x3-8x2+10x-3,当x=2时,V3的值为( )
| A. | 9 | B. | 24 | C. | 71 | D. | 134 |
13.经统计,在中国电信的某营业厅每天上午9点钟排队等候的人数及相应概率如下:
则该营业厅上午9点钟时,最多有5人排队的概率是0.56.
| 排队人数 | 1 | 3 | 5 | 8 | 10 | ≥11 |
| 概率 | 0.1 | 0.16 | 0.3 | 0.3 | 0.1 | 0.04 |
14.把一条正态曲线a沿着横轴方向向右移动2个单位,得到新的一条曲线b,下列说法中不正确的是( )
| A. | 曲线b仍然是正态曲线 | |
| B. | 曲线a和曲线b的最高点的纵坐标相等 | |
| C. | 以曲线b为正态分布的总体的方差比以曲线a为正态分布的总体的方差大2 | |
| D. | 以曲线b为正态分布的总体的期望比以曲线a为正态分布的总体的期望大2 |
15.
已知函数f(x)=Asin(ωx+φ)$(A>0,ω>0,|φ|<\frac{π}{2},x∈R)$的图象如图所示,令g(x)=f(x)+f'(x),则下列关于函数g(x)的说法中不正确的是( )
| A. | 函数g(x)图象的对称轴方程为$x=kπ-\frac{π}{12}(k∈Z)$ | |
| B. | 函数g(x)的最大值为$2\sqrt{2}$ | |
| C. | 函数g(x)的图象上存在点P,使得在P点处的切线与直线l:y=3x-1平行 | |
| D. | 方程g(x)=2的两个不同的解分别为x1,x2,则|x1-x2|的最小值为$\frac{π}{2}$ |