题目内容
已知三棱锥O-ABC,OA、OB、OC两两垂直且长度均为6,长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在△OBC内运动(含边界),则MN的中点P的轨迹与三棱锥的面OAB、OBC、OAC围成的几何体的体积为________.
分析:由于长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在△BCO内运动(含边界),MN的中点P的轨迹为以O为球心,以1为半径的球体,故MN的中点P的轨迹与三棱锥的面所围成的几何体的体积,利用体积分割及球体的体积公式即可.
解答:因为长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在△BCO内运动(含边界),
可知MN的中点P的轨迹为以O为球心,以1为半径的球体,
则MN的中点P的轨迹与三棱锥的面所围成的几何体可能为该球体的
故答案为:
点评:此题考查了学生的空间想象能力,还考查了球体,三棱锥的体积公式即计算能力.
练习册系列答案
相关题目