题目内容

(Ⅰ)设函数,证明:当x>0时,f(x)>0.
(Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽到的20个号码互不相同的概率为p,证明:
【答案】分析:(Ⅰ)欲证明当x>0时,f(x)>0,由于f(0)=0利用函数的单调性,只须证明f(x)在[0,+∞)上是单调增函数即可.先对函数进行求导,根据导函数大于0时原函数单调递减即可得到答案.
(Ⅱ)先计算概率P=,再证明,即证明99×98×…×81<(90)19,最后证明<e-2,即证>e2,即证19ln>2,即证ln,而这个结论由(1)所得结论可得
解答:(Ⅰ)证明:∵f′(x)=
∴当x>-1,时f′(x)≥0,
∴f(x)在(-1,+∞)上是单调增函数,
∴当x>0时,f(x)>f(0)=0.
即当x>0时,f(x)>0.
(Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,连续抽取20次,则抽得的20个号码互不相同的概率为P=,要证P<
先证:P=,即证
即证99×98×…×81<(90)19
而99×81=(90+9)×(90-9)=902-92<902
98×82=(90+8)×(90-8)=902-82<902
91×89=(90+1)×(90-1)=902-12<902
∴99×98×…×81<(90)19
即P<
再证:<e-2,即证>e2,即证19ln>2,即证ln
由(Ⅰ)f(x)=ln(1+x)-,当x>0时,f(x)>0.
令x=,则ln(1+)-=ln(1+)->0,即ln
综上有:P<
点评:本题主要考查函数单调性的应用、函数的单调性与导数的关系等,考查运算求解能力,函数、导数、不等式证明及等可能事件的概率等知识.通过运用导数知识解决函数、不等式问题,考查了考生综合运用数学知识解决问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网