题目内容
设a、b满足条件a>b>1,3logab+3logba=10,求式子logab-logba的值.
解法1:∵logba·logab=
·
=1,
∴logba=
.
由logab+logba=
,得:logab+
=
.
令t=logab,∴t+
=
,化简得3t2-10t+3=0,由a>b>1,知0<t<1,∴t=
.
∴logab-logba=logab-
=
-3=-
.
解法2:logab·logba=
·
=1,
∵3logab+3logba=10,∴9(logab+logba)2=100,
∴log
b+log
a=
-2=![]()
∴(logab-logba)2=log
b+log
a-2=
.
∵a>b>1,∴logab-logba<0,∴logab-logba=-
.
练习册系列答案
相关题目