题目内容

17.设函数y=f(x)可导,则$\lim_{△x→0}\frac{f(1+3△x)-f(1)}{3△x}$等于(  )
A.f'(1)B.3f'(1)C.$\frac{1}{3}f'(1)$D.以上都不对

分析 利用导数的定义式f′(x)=$\underset{lim}{△x→0}\frac{f(x+△x)-f(x)}{△x}$可得答案.

解答 解:∵函数y=f(x)可导,
根据导数的定义式f′(x)=$\underset{lim}{△x→0}\frac{f(x+△x)-f(x)}{△x}$可得
∴$\lim_{△x→0}\frac{f(1+3△x)-f(1)}{3△x}$=f'(1),
故选:A.

点评 本题考查平均变化率的极限,即导数的定义,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网