题目内容

7.已知函数y=f(x)=|x-1|-mx,若关于x的不等式f(x)<0解集中的整数恰为3个,则实数m的取值范围为   (  )
A.$\frac{2}{3}<m≤\frac{3}{4}$B.$\frac{3}{4}<m≤\frac{4}{5}$C.$\frac{2}{3}<m<\frac{3}{4}$D.$\frac{3}{4}<m<\frac{4}{5}$

分析 由f(x)<0得|x-1|<mx,构造函数,作出两个函数的图象得到不等式关系进行求解即可.

解答 解:由f(x)<0得|x-1|-mx<0,即|x-1|<mx,
设g(x)=|x-1|,h(x)=mx.
作出g(x)的图象如图:
若|x-1|<mx解集中的整数恰为3个,
则x=1,2,3是解集中的三个整数,
则满足$\left\{\begin{array}{l}{h(3)>g(3)}\\{h(4)≤g(4)}\end{array}\right.$,即$\left\{\begin{array}{l}{3m>2}\\{4m≤3}\end{array}\right.$,
则$\left\{\begin{array}{l}{m>\frac{2}{3}}\\{m≤\frac{3}{4}}\end{array}\right.$,即$\frac{2}{3}<m≤\frac{3}{4}$,
故选:A

点评 本题主要考查函数与方程的应用,根据不等式整数根的个数,结合数形结合建立不等式关系是解决本题的关键.综合性较强,有一定的难度.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网