题目内容

16.在三角形ABC中,角A、B、C所对的边分别为a、b、c,且a=2,∠C=$\frac{π}{4}$,cosB=$\frac{3}{5}$.
(1)求sinA的值;
(2)求△ABC的面积.

分析 (1)由已知利用同角三角函数基本关系式可求sinB的值,利用特殊角的三角函数值,三角形内角和定理,两角和的正弦函数公式即可解得sinA的值.
(2)由(1)及正弦定理可得b=$\frac{asinB}{sinA}$的值,利用三角形面积公式即可计算得解.

解答 解:(1)在△ABC中,∵cosB=$\frac{3}{5}$,∠C=$\frac{π}{4}$,
∴sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{4}{5}$,
∴sinA=sin(B+C)=sinBcosC+cosBsinC=$\frac{4}{5}$×$\frac{\sqrt{2}}{2}$+$\frac{3}{5}$×$\frac{\sqrt{2}}{2}$=$\frac{7\sqrt{2}}{10}$,
(2)∵由(1)可得:a=2,sinB=$\frac{4}{5}$,sinA=$\frac{7\sqrt{2}}{10}$,
∴由正弦定理可得:b=$\frac{asinB}{sinA}$=$\frac{2×\frac{4}{5}}{\frac{7\sqrt{2}}{10}}$=$\frac{8\sqrt{2}}{7}$,
∴S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}×2×\frac{8\sqrt{2}}{7}×\frac{\sqrt{2}}{2}$=$\frac{8}{7}$.

点评 本题主要考查了同角三角函数基本关系式,特殊角的三角函数值,三角形内角和定理,两角和的正弦函数公式,正弦定理,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网