题目内容

14.已知函数f(x)=sin(2x+φ)(0<φ<$\frac{π}{2}$)的一个对称中心为($\frac{π}{3}$,0),则要得到函数y=f′(x)的图象,只需把函数f(x)的图象(  )
A.沿x轴向左平移$\frac{π}{2}$个单位,纵坐标伸长为原来的2倍
B.沿x轴向右平移$\frac{π}{2}$个单位,纵坐标伸长为原来的2倍
C.沿x轴向左平移$\frac{π}{4}$个单位,纵坐标伸长为原来的2倍
D.沿x轴向右平移$\frac{π}{4}$个单位,纵坐标伸长为原来的2倍

分析 先求得f′(x)的解析式,再利用诱导公式、函数y=Asin(ωx+φ)的图象变换规律,得出结论.

解答 解:函数y=f′(x)=[sin(2x+φ)]′=2cos(2x+φ),
∵函数f(x)=sin(2x+φ)(0<φ<$\frac{π}{2}$)的一个对称中心为($\frac{π}{3}$,0),
∴2•$\frac{π}{3}$+φ=kπ,k∈Z,∴φ=$\frac{π}{3}$,∴f(x)=sin(2x+$\frac{π}{3}$),∴f′(x)=2cos(2x+$\frac{π}{3}$)=2sin(2x+$\frac{5π}{6}$)=2sin2(x+$\frac{5π}{12}$).
把函数f(x)=sin(2x+$\frac{π}{3}$)=sin2(x+$\frac{π}{6}$)的图象沿x轴向左平移$\frac{π}{4}$个单位,可得y=sin2(x+$\frac{5π}{12}$)的图象,
再把纵坐标伸长为原来的2倍,可得f′(x)=2sin2(x+$\frac{5π}{12}$)的图象,
故选:C.

点评 本题主要考查诱导公式的应用,函数y=Asin(ωx+φ)的图象变换规律,统一这两个三角函数的名称,是解题的关键,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网