题目内容
9.已知圆M的圆心为M(-1,2),直线y=x+4被圆M截得的弦长为$\sqrt{2}$,点P在直线l:y=x-1上.(1)求圆M的标准方程;
(2)设点Q在圆M上,且满足$\overrightarrow{MP}$=4$\overrightarrow{QM}$,求点P的坐标.
分析 (1)求出M(-1,2)到直线y=x+4的距离,利用直线y=x+4被圆M截得的弦长为$\sqrt{2}$,求出半径,即可求圆M的标准方程;
(2)设点Q在圆M上,且满足$\overrightarrow{MP}$=4$\overrightarrow{QM}$,求出P的轨迹方程与直线y=x-1联立,即可求点P的坐标.
解答 解:(1)M(-1,2)到直线y=x+4的距离为d=$\frac{|-1-2+4|}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,…(2分)
又直线y=x+4被圆M截得的弦长为$\sqrt{2}$,
所以圆M的半径为r=1,…(4分)
∴圆M的标准方程为(x+1)2+(y-2)2=1.…(6分)
(2)由$\overrightarrow{MP}$=4$\overrightarrow{QM}$,得|$\overrightarrow{MP}$|=4|$\overrightarrow{QM}$|=4,
所以点P在圆(x+1)2+(y-2)2=16上,…(8分)
又点P在直线y=x-1上,联立解得$\left\{\begin{array}{l}{x=-1}\\{y=-2}\end{array}\right.$或$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$,
即点P的坐标为(-1,-2)或(3,2).…(12分)
点评 本题考查圆的方程,考查直线与圆的位置关系,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目
19.若sin(θ-$\frac{π}{6}$)=$\frac{1}{4}$,$θ∈({\frac{π}{6},\frac{2π}{3}})$,则$cos({\frac{3π}{2}+θ})$的值为( )
| A. | $\frac{{\sqrt{15}+\sqrt{3}}}{8}$ | B. | $\frac{{\sqrt{15}-\sqrt{3}}}{8}$ | C. | $\frac{{-\sqrt{15}+\sqrt{3}}}{8}$ | D. | $\frac{{-\sqrt{15}-\sqrt{3}}}{8}$ |
14.已知函数f(x)=sin(2x+φ)(0<φ<$\frac{π}{2}$)的一个对称中心为($\frac{π}{3}$,0),则要得到函数y=f′(x)的图象,只需把函数f(x)的图象( )
| A. | 沿x轴向左平移$\frac{π}{2}$个单位,纵坐标伸长为原来的2倍 | |
| B. | 沿x轴向右平移$\frac{π}{2}$个单位,纵坐标伸长为原来的2倍 | |
| C. | 沿x轴向左平移$\frac{π}{4}$个单位,纵坐标伸长为原来的2倍 | |
| D. | 沿x轴向右平移$\frac{π}{4}$个单位,纵坐标伸长为原来的2倍 |
19.设f,g都是由A到A的映射,其对应法则如表所示(从上到下),则与f[g(1)]相同的是( )
表1 映射f的对应法则
表2 映射g的对应法则
表1 映射f的对应法则
| 原像 | 1 | 2 | 3 | 4 |
| 像 | 3 | 4 | 2 | 1 |
| 原像 | 1 | 2 | 3 | 4 |
| 像 | 4 | 3 | 1 | 2 |
| A. | g[f(3)] | B. | g[f(1)] | C. | f[f(4)] | D. | f[f(3)] |