题目内容
关于直线及平面,下列命题中正确的是
A . B.
C. D.
C
已知函数,,其中且.
(Ⅰ) 当,求函数的单调递增区间;
(Ⅱ) 若时,函数有极值,求函数图象的对称中心的坐标;
(Ⅲ)设函数 (是自然对数的底数),是否存在a使在上为减函数,若存在,求实数a的范围;若不存在,请说明理由.
已知圆心为C的圆,满足下列条件:圆心C位于x轴正半轴上,与直线3x-4y+7=0相切,且被轴截得的弦长为,圆C的面积小于13.
(Ⅰ)求圆C的标准方程;
(Ⅱ)设过点M(0,3)的直线l与圆C交于不同的两点A,B,以OA,OB为邻边作平行四边形OADB.是否存在这样的直线l,使得直线OD与MC恰好平行?如果存在,求出l的方程;如果不存在,请说明理由.
已知.
(Ⅰ)求的最大值及取得最大值时x的值;
(Ⅱ)在△ABC中,角A,B,C的对边分别为a,b,c,若,,,求△ABC的面积.
设为向量。则是的
A .充分不必要条件 B.必要不充分条件 C. 充分必要条件 D.既不充分也必要条件
已知某几何体的三视图如图,其中主视图中半圆直径为2,则该几何体的体积_______________________
在△ABC中,角所对的边分别为,且∥
(1)求的值
(2)求三角函数式的取值范围
从3名骨科、4名脑外科和4名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是_______ (用数字作答)。
为了了解某市开展群众体育活动的情况,拟采用分层抽样的方法从三个区中抽取7个工厂进行调查,已知区中分别有18,27,18个工厂
(1)求从区中应分别抽取的工厂个数
(2)若从抽得的7个工厂中随机地抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有一个来自区的概率