题目内容
函数f(x)=
+
(0<x<1)的最小值为______.
| 1 |
| x |
| 4 |
| 1-x |
由题意得,f′(x)=-
+
=
=
,
令f′(x)=0,即3x2+2x-1=0,解得x=-1或
,
当0<x<
时,f′(x)<0;当
<x<1时,f′(x)>0,
∴f(x)在(0,
)上递减,在(
,1)上递增,
则当x=
时,函数取到最小值为f(
)=3+
=9,
故答案为:9.
| 1 |
| x2 |
| 4 |
| (1-x)2 |
| -(1-x)2+4x2 |
| x2(1-x)2 |
=
| 3x2+2x-1 |
| x2(1-x)2 |
令f′(x)=0,即3x2+2x-1=0,解得x=-1或
| 1 |
| 3 |
当0<x<
| 1 |
| 3 |
| 1 |
| 3 |
∴f(x)在(0,
| 1 |
| 3 |
| 1 |
| 3 |
则当x=
| 1 |
| 3 |
| 1 |
| 3 |
| 4 | ||
1-
|
故答案为:9.
练习册系列答案
相关题目