题目内容

10.已知等比数列{an}的公比q=2,a4=8,Sn为{an}的前n项和,设a=a20.3,b=0.3${\;}^{{a}_{3}}$,c=logan(Sn+$\frac{1}{{S}_{n}}$),则a,b,c大小关系是(  )
A.a<b<cB.b<a<cC.c<b<aD.b<c<a

分析 由等比数列的性质得a1=1,an=1×2n-1=2n-1,a2=2,a3=4,${S}_{n}=\frac{1-{2}^{n}}{1-2}$=2n-1,由此利用对数函数和指数函数的单调性质能判断a,b,c的大小关系.

解答 解:∵等比数列{an}的公比q=2,a4=8,Sn为{an}的前n项和,
∴${a}_{4}={a}_{1}{q}^{3}$,∴8=a1•8,
解得a1=1,∴an=1×2n-1=2n-1
∴a2=2,a3=4,${S}_{n}=\frac{1-{2}^{n}}{1-2}$=2n-1,
设a=a20.3,b=0.3${\;}^{{a}_{3}}$,c=logan(Sn+$\frac{1}{{S}_{n}}$),
∴a=20.3∈(1,$\sqrt{2}$),a=20.3<20.5=$\sqrt{2}$,b=0.34∈(0,1),
∵n∈N*,∴1≤2n-1≤2n-1,
∴$\sqrt{2}$<c=$lo{g}_{{2}^{n-1}}({2}^{n}-1+\frac{1}{{2}^{n}-1})$<2,
∴a,b,c大小关系是b<a<c.
故选:B.

点评 本题考查等比数列的前5项和的求法,是中档题,解题时要认真审题,注意等差数列、等比数列的性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网